

一体化储能电源

产品手册

ROH5542F-05X1P30C, ROH5542F-10X2P30C ROH5542F-15X3P30C, ROH5542F-20X4P30C ROH5542F-25X5P30C, ROH5542F-30X6P30C

目 录

重	要多	安全说明	1
免	责卢	5明	5
1	基之	b 资料	6
•			
		产品概述及特点	
		产品外观	
		产品审名规则	
_		···	
2	界国	面介绍	16
	2.1	指示灯	16
	2.2	按键	17
	2.3	流程图画面	17
	2.4	界面	20
		2.4.1 PV 实时参数	20
		2.4.2 市电实时参数	21
		2.4.3 设备实时参数	22
		2.4.4 负载实时参数	22
		2.4.5 蓄电池实时参数	22
		2.4.6 实时故障信息	24
	2.5	参数设置	24
		2.5.1 参数列表	24
		2.5.2 蓄电池工作模式	38
		2.5.3 电池电压控制点参数	40
3	系约	充安装	42
	2 1	安装注意事项	42
		准备安装工具	
		选择安装位置	
		安装储能电源	
4		^论 电源电气连接	
	4.1	接线规格和断路器选型	46
	4.2	储能电源内部接线	47
	4.3	储能电源外部接线	50

	4.4	储能电源调测	55
	4.5	锂电池休眠及唤醒	58
		4.5.1 锂电池休眠	58
		4.5.2 锂电池唤醒	58
5	工化	乍模式	59
	5.1	缩写说明	59
	5.2	有蓄电池工作模式	59
6	保护	户功能	66
7	故障	章排除	68
	7.1	蓄电池故障	68
	7.2	PV 故障	69
	7.3	逆变器故障	71
	7.4	市电故障	72
	7.5	负载故障	73
	7.6	其他单机故障	74
	7.7	BMS 通信故障	76
8	系约	充维护	77
9	技オ	卡参数	78
10) 附	·큣	82
	10.	1 附录一 缩略语索引表	82
	10.2	2 附录二 BMS 状态数据对照表	86

重要安全说明

请保留本手册以备日后査用。

本手册中包含了一体化储能电源(下文简称为"储能电源")的安全、安装以及操作说明。

1. 符号说明:

为了保障用户在使用本产品的同时保障人身财产安全,手册中提供了相关信息,并用以下符号突出强调。在手册中遇到以下符号请认真仔细阅读相关文字。

符号	定义	
小提示	表示可参考的建议	
0	注意 :表示在操作过程中的重要提示,未执行可能导致设备故障报警。	
<u>^</u>	誊示 :表示具有潜在的危险,如果未能避免可能会导致设备损坏。	
4	警告 :表示具有电击的危险,如果未能避免将会导致设备损坏或人员的触电/伤亡。	
	高温警告:表示具有因高温造成的危险,如果未能避免可能造成人员的烫伤。	
[]i	在对设备进行操作前,请阅读说明书。	

整个系统的安装操作由专业技术人员完成!

2. 专业技术人员的要求:

- 经过专业的培训;
- 熟悉电气系统的相关安全规范;
- 仔细阅读本手册并掌握操作相关安全注意事项。

3. 专业技术人员可操作:

- 将储能电源安装到固定位置
- 进行储能电源的试运行
- 操作与维护储能电源

4. 安装前安全注意事项:

收到储能电源后,首先检查是否在运输过程中受到损坏,若发现问题请及时联系运输公司,我司当地经销商或我司。

• 在摆放或移动储能电源时, 遵循本手册中的说明。

警示

• 储能电源进行安装时,评估操作区域是否存在电弧危险。

请勿将储能电源放置于儿童可触碰的地方。

5. 机械安装安全注意事项:

• 在安装储能电源之前,确认储能电源无电气连接。

• 确认安装储能电源的散热空间,请勿将储能电源安装在潮湿、高盐雾、腐蚀、油腻、 易燃易爆或粉尘大量聚集等恶劣环境中。

6. 电气连接安全注意事项:

• 检查线路连接是否紧实,避免由于虚接而造成热量聚集发生危险。

- 储能电源的外壳与大地相连接,连接保护接地端子与大地的导线截面积不小于 4mm² • 建议在锂电池与主机之间串联保险丝或断路器,且保险丝或断路器的额定电流为储
- 能申源额定输入申流的 2 倍。
- 请勿将储能电源与铅酸液体蓄电池安装到一个密封的空间, 铅酸液体蓄电池会产生 可燃气体, 若连接端子产生火花, 可能会引起火灾。

交流输出接口严禁连接其他电源或市电。否则会对储能电源造成损坏。

• 交流输出接口连接负载时, 储能电源需要停止工作。

- 交流输出接口严禁连接变压器或冲击功率(VA)超过过载功率的负载,否则会对储 能电源造成损坏。
- 市电输入和交流输出均为高压电,请勿触摸接线处,避免触电。

7. 储能电源运行安全注意事项:

高温警告

储能电源工作时,会产生大量的热量,外壳温度很高,请勿触摸,且远离受高温影响的 材料或设备。

- 储能电源工作时,请勿打开储能电源机壳进行操作。
- 在排除影响储能电源安全性能的故障或断开直流输入时,关闭储能电源开关,等待 液晶屏完全熄灭后再进行操作。

8. 在储能电源内部引起电弧、火灾、爆炸等危险的操作:

- 触摸未经过绝缘处理的可能带电的线缆末端:
- 触摸可能带电的接线铜排、端子或储能电源内部器件;
- 功率线缆连接松动:
- 螺丝等零件不慎掉落到储能电源内部:

未经培训的非专业技术人员的不正确操作。

警告

一旦发生事故,须由专业人员处理,不当操作可能造成更严重的事故。

9. 储能电源停止运行注意事项:

- 首先关闭交流输出,断开市电输入,然后切断直流开关;
- 储能电源断开输入输出线缆 10 分钟后,才能触摸内部导电器件;
- 储能电源内部不包含维修部件,若需要维修服务,请联系本公司售后服务人员。

设备断电 10 分钟内触摸或打开机壳维修会发生危险。

10. 储能电源维护注意事项:

- 建议使用检测设备检测储能电源,确认输入端子处不存在电压、输入输出电缆上无电流;
- 在进行电气连接和维修工作时,张贴临时的警告标志或设置障碍,避免无关人员进入电气连接或维护 区域。
- 对储能电源的不当维护操作可能导致人员伤害或设备损坏;
- 为了避免静电损害,建议佩戴防静电手环或避免对电路板不必要的接触。

储能电源上的安全标识、警告标签以及铭牌须清晰可见且不被移除或覆盖。

11. 锂电池安全注意事项:

- 锂电池必须单独存放,且存放于外包装中,避免和其他物品混合存放,避免露天存放,避免锂电池堆叠过高。
- 搬运锂电池时,应按照锂电池要求的方向进行搬运,禁止倒置、倾斜,避免锂电池发生撞击。
- 安装锂电池前,应检查包装是否完好,包装受损的锂电池不可继续使用。
- 安装锂电池时,若锂电池跌落或者受到强烈撞击,可能导致设备内部损坏,严禁继续使用,否则会有安全风险(可能出现电芯漏液、电击伤害等)。
- 锂电池跌落后,如果出现明显异味、破损、冒烟、起火等情况,立即疏散人员,及时报警,联系专业人员,由专业人员在保障安全的情况下,使用消防设施进行灭火等处理。
- 锂电池跌落后,如果外观无明显变形或破损且未出现明显异味、冒烟、起火,联系专业人员将锂电池 转运至空旷安全的地方或者联系回收公司处理。
- 请勿在锂电池周围进行焊接、研磨等类似工作,避免产生电火花、电弧造成火灾等危害。
- 请勿使用损坏的锂电池,损坏的锂电池可能导致易燃气体的释放。
- 请勿使用超出质保期的锂电池。当锂电池超出使用寿命时,请联系锂电池回收公司进行报废处理。
- 请按当地法律法规处理房旧锂电池,避免将房旧锂电池暴露在阳光直射、高温、高湿度或腐蚀性环境

- 中。请勿将锂电池作为生活垃圾处理。锂电池处置不当可能会导致环境污染。
- 请在本手册规定的工作温度范围内使用锂电池。
- 锂电池温度过高时会导致锂电池变形、损坏及电解液溢出,泄漏有毒气体。
- 当发生电解液泄漏或者有异常气味时,应避免接触泄漏的液体或气体。请立即联系专业人员处理。
- 如果发生火灾,在确保安全的情况下,应该将系统下电。采用二氧化碳、FM-200或 ABC 干粉灭火器 灭火。

请勿将锂电池暴露在高温环境或发热设备的周围,如日照、火源、变压器、取暖器等。锂电池过热可能引起起火、爆炸。

- 禁止拆解、改装或破坏锂电池(如插入异物、浸入水或其它液体中等),以免引起 锂电池漏液、过热、起火或爆炸。
- 禁止锂电池端子接触其他金属,这可能导致发热或电解液泄漏。

12. 工作环境

- 工作环境温度: -20℃~+50℃(>30℃降额运行)
- 存储环境温度: -25℃~+60℃ (无急剧温度变化)

该储能电源严禁在以下场所使用,若因使用在不合适的场所造成的损坏,本公司不承担 任何责任:

- 严禁将储能电源安装在潮湿、高盐雾、腐蚀、油腻、易燃易爆或粉尘大量聚集等 恶劣环境中。室外安装时应避免阳光直晒和雨水渗入。
- 严禁将储能电源与铅酸液体蓄电池安装到一个密封的空间,因为铅酸液体蓄电池 会产生可燃气体,若连接端子产生火花,可能会引起火灾。

免责声明

以下情况下造成的损坏,本公司不承担任何责任:

- 使用不当或使用在不符合工作环境的场所造成的损坏(严禁将储能电源安装在潮湿、高盐雾、腐蚀、油腻、易燃易爆或粉尘大量聚集等恶劣环境)。
- 实际工作中的电流、电压、功率超过储能电源的限定值。
- 环境温度超过限制工作温度范围造成的损坏。
- 未遵循储能电源标识或手册说明引起的电弧,火灾,爆炸等事故。
- 擅自拆开和维修储能电源。
- 雷击、暴雨、山洪、市电故障等不可抗力造成的损坏。
- 运输或装卸储能电源时发生的损坏。

1 基本资料

1.1 产品概述及特点

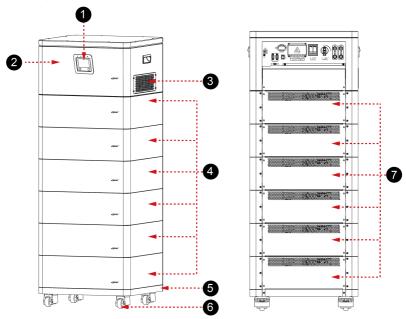
ROH-F-P30C 系列是集锂电池与离网储能逆变器的一体化储能电源产品。防护等级 IP30,本产品标准配置 1~6 个锂电池(最多可配置 12 个锂电池,超过 6 个锂电池需定制)和 1 台离网储能逆变器主机。每个锂电池容量为 5.12kWh,可配置容量高达 30.72kWh。

同时支持多台储能电源(最多 12 台)通过单相并联、组三相的方式进行扩展应用,可输出 220VAC(单相并机)或 380VAC(组三相)的交流电。

主机功率为 5500W 的离网储能逆变器 (注: 若主机选择 5500W 的离网储能逆变器,满功率运行需至少 2 个以上的电池。),集市电/油机与太阳能充电、市电旁路与逆变输出、能量管控于一体。采用先进的 DSP 控制技术,具有高质量、高稳定性及高可靠性。太阳能充电部分采用优化的 MPPT 追踪技术,在多种环境下均能追踪到光伏阵列的最大功率点,实时获取太阳能电池板的最大能量。支持双路 PV 输入(单独连接或两路并联),提高 PV 利用率。 DC-AC 逆变部分基于全数字化设计,采用 SPWM 技术,输出纯正弦波,将直流电转换成交流电。多种充电模式及交流输出模式可选,用户可通过设置,灵活的使用太阳能或市电,实现能源的高效利用。

显示模块选用大尺寸彩色点阵触摸液晶屏,清晰显示系统的运行数据及运行状态。标准的 Modbus 协 议通信接口,方便用户拓展应用,适合不同的监控需求。

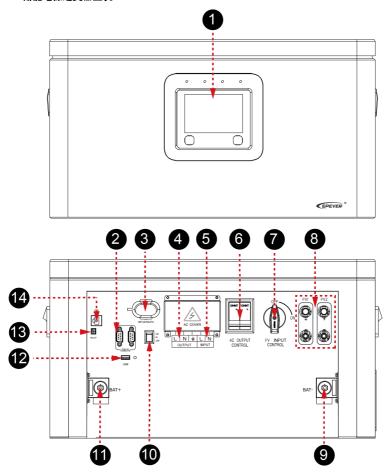
该产品通过各模块堆叠的方式,安装简单,万向轮支撑底座,方便移动位置。通过主机和不同数量的 锂电池组合,充分满足用户对大容量储能电源的需求。


特点

- 多能源管理的全数字化新型一体化储能电源
- 模块化设计, 堆叠式安装, 提供便捷独立的安装与维护
- 内置磷酸铁锂电池,具有高循环稳定性,长寿命周期
- 纯正弦波输出
- 拥有锂电池通信接口,实现对锂电池安全的充放电控制
- 具有稳定的锂电池自激活功能
- 具有锂电池充电限流功能,实现多机并联①
- AC 输出支持并联运行,并机数量最多 12 台
- AC 输出并联运行支持单相、三相设置
- PFC 技术,提高功率因数,减少无功功率,降低电网容量的占用
- MPPT 技术, 最大跟踪效率大于 99.5%
- 支持双路 PV 输入,提高 PV 利用率^②

- 支持多类型发电机充电③
- 可设置最大市电充电电流, 灵活配置市电充电功率
- 可一键控制交流输出
- 支持软启动
- 大尺寸彩色点阵触摸液晶显示屏,实时监控系统状态
- 具有历史数据记录功能, 15 分钟间隔可记录半年, 间隔时间 1~3600 秒可设置
- RS485 通信接口,可选配 WiFi 等通信模块,实现远程监控
- 全面的电子保护功能
- 工作环境温度-20℃~+50℃(>30℃降额运行),适用范围更广
- ① 当锂电池充电电流>100A,或者电芯温度<15℃,或者电芯温度>45℃时,自动进入充电限流模式;充电电流限制到20A。
 - 当锂电池的充电电流<3A 且 18℃<电芯温度≤42℃,或者充电限流时间超过 30 分钟时,自动退出充电限流模式。
- ② ROH-F-P30C 系列可以实现单路 MPPT 跟踪或者两路并联后 MPPT 跟踪,同时输入电流从单路 15A 增加至 30A。当连接两路 PV 时,如果两路 PV 阵列各自独立输入时需设置为 "Single (全独立)"模式;如果两路 PV 阵列并联为一路接入储能电源时 (需对储能电源的 PV 端子进行外部并联),需设置为 "Parallel (全并联)"模式。仅有一路 PV 输入的产品型号默认为 "Single (全独立)"模式 (其他模式无效)。
- ③当使用非变频发电机时,充电电流无法达到额定功率;建议使用变频发电机。且使用发电机时需把交流输入设置为发电机模式,具体设置方法参考章节 2.5.1 参数列表。

1.2 产品外观


● 整机系统

注:产品外观图以 ROH5542F-30X6P30C 为例说明。

序号	说明	序号	说明
0	液晶显示单元 (详见章节 2)	6	底座
2	主机 (离网储能逆变器)	6	外向轮 x4
3	可拆卸风扇		
	锂电池 (1~12 个可选,超过 6 个需	0	后盖板 (根据锂电池数量确定)
4	定制)		

■ 储能电源逆变器主机

注: 主机的产品外观图以 HP5542F-AH1050P30C 为例说明。

序号	说明	序号	说明
0	液晶显示单元 (详见章节 2)	8	PV 输入接线端子
0	多机并联通信接口(DB9)	9	锂电池负极接线端子
8	RS485 通信接口(USB-A 3.0,带隔 离设计) ⁽¹⁾ 5VDC/1.2A	0	储能电源开关

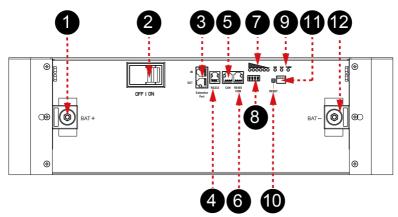
4	交流输出接线端子	0	锂电池正极接线端子
6	交流输入接线端子	@	USB 通信口 ⁽²⁾
6	交流输出断路器	ß	干接点接口(3)
0	直流输入开关	(BMS 通信接口 ⁽⁴⁾

(1) 通过 RS485 通信接口,可连接 WiFi 等通信模块,实现远程监控。RS485 通信接口(USB-A 3.0 母座)管脚定义如下:

管脚	定义	颜色	说明
1	VBUS	红色	电源(5VDC/1.2A)
2/3/7/8/9	预留	预留	预留
4	GND	黑色	电源地
5	RS485-A1	蓝色	RS485-A1 (用于与云平台、APP软件、PC软件、显示屏等进行数据传输)
6	RS485-B1	黄色	RS485-B1(用于与云平台、APP软件、PC软件、显示屏等进行数据传输)

- (2) USB 通信口用于储能电源和 PC 端进行通信,升级表头软件。
- (3) 干接点触点容量为 1A@125VAC。

作用:该干接点接口可控制油机的开启关闭,与油机开关并联使用。

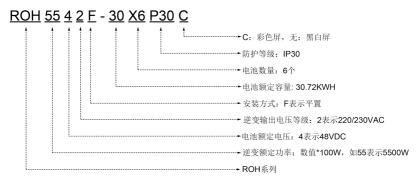

(4) 本储能电源逆变器主机内置 BMS-Link 模块,将锂电池直接连接到逆变器主机的 BMS 通信接口,可实现主机与锂电池 BMS 进行通信。BMS 通信接口(RJ45)管脚定义如下:

管脚	定义	管脚	定义
1	+5VDC	5	RS485-A
2	+5VDC	6	RS485-A
3	3 RS485-B		GND
4	RS485-B	8	GND

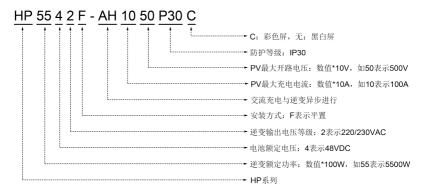
● 锂电池

注: 锂电池的产品外观图以 LFP5KWH51. 2V-FP30 为例说明。

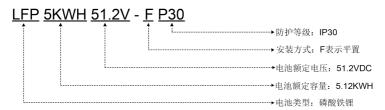
序号	说明	序号	说明
0	锂电池正极接线端子	0	锂电池电量指示灯
0	锂电池断路器	8	干接点接口
3	锂电池并联通信接口(双 RJ45 接口)	9	锂电池状态指示灯
4	RS232 通信接口(预留接口)	0	复位键
6	CAN 通信接口(预留接口)	•	拨码开关
6	RS485 通信接口(锂电池与逆变器 主机通信口)	®	锂电池负极接线端子

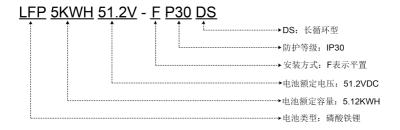

● 储能容量说明

储能电源支持容量的扩展,最多支持 12 个锂电池(标准配置 1~6 个锂电池,超过 6 个锂电池需定制),容量可从 5.12kWh 扩展到 61.44KWh。


6 个锂电池, 30.72KWh 1 个锂电池, 5.12KWh

1.3 产品命名规则


● 一体化储能电源



● 储能电源逆变器主机

● 锂电池

● 底座(标配件)

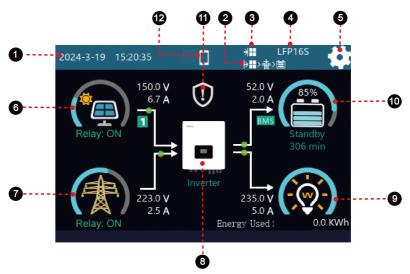
1.4 系统组成

序号	名称	图片	数量
1	离网储能逆变器主机 (标配件)	Qea.	1台
2	锂电池 (标配件)	Quin'	1~6 个并联(数量可选)
3	锂电池移动支架 (标配件)		1 个

4	锂电池固定支架 (选配件)	0 0	4 ↑
---	------------------	-----	------------

2 界面介绍

注意:水平视线和液晶屏的角度在 90° 范围内才可以清晰的看到液晶屏的显示内容。如果角度超过 90°,液晶屏的显示内容无法看清。


2.1 指示灯

指示灯	状态	说明
	熄灭	无 PV
	绿灯常亮	PV 正常
PV	绿灯闪烁	PV 输入为 DC (直流源) 模式
	红灯常亮	PV 充电故障(PV1 过压、PV2 过压)
	熄灭	逆变无输出
	绿灯常亮	逆变、充电、旁路正常
LOAD	你好告言	逆变故障(逆变过流、逆变过压、逆变欠压、输出短路、输
	红灯常亮	出过载)
	熄灭	无市电
	绿灯常亮	市电正常
GRID	绿灯闪烁 (0.5Hz)	油机充电
	红灯常亮	市电充电模块故障(市电过压、市电过流、市电欠压、市电
		频率异常)
BUN	绿灯闪烁 (0.5Hz)	通信正常
RUN	红灯常亮	通信故障

2.2 按键

按键	操作	说明
$oldsymbol{\delta}$	短按	退出当前界面,返回到主界面
\bigcirc	短按	开启/关闭负载开关。 短按此按钮弹出如下提示信息,点击 ON/OFF 即可开启/关闭 负载开关。若设置为 OFF 后,重新开机自动恢复为 "ON"。

2.3 流程图画面

序号	说明	
0	2024-3-19 15:20:35	显示系统时间。设备使用前,请正确设置系统时间。
2	} #}#>≢	显示电池放电模式。具体参数设置见 <u>2.5.1 参数列表</u> > 5. System(系统参数设置界面)。 表示 PV > BP > BT (即太阳能>旁路>蓄电池),

		表示 PV>BT>BP (即太阳能>蓄电池>旁路),
3	₩	显示电池充电模式。具体参数设置见 <u>2.5.1 参数列表</u> > 5. System(系统参数设置界面)。 录示 Solar (仅太阳能充电), 表示 Solar > Grid(太阳能优先), 表示 Solar+Grid(太阳能加市电), 表示 Grid > Solar(市电优先)。
4	LFP16S	显示当前电池类型, 具体参数设置见 <u>2.5.1 参数列表</u> > 5. System(系统参数设置界面)。
6	*	参数设置图标,点击进入密码输入界面,正确输入密码后可自定义设置系统各参数;具体操作见 <u>2.5 参数设置</u> 。
6	150.0 V 6.7 A 1	● 显示 PV 输入电压、PV 输入电流 ● 线条的箭头方向显示 PV 输入能量的流动方向(线条上的数字 1 或 2) 表示当前数据对应的是光伏模块 1 或 2) ● 圆弧 表示当前 PV 发电功率占 PV 额定发电功率百分比 ● 显示 PV 模块是否正常工作: 表示 PV 正常工作,表示 PV 不工作 ● 显示当前 PV 支路的 MPPT 工作状态: "Relay: ON"表示正常工作,"Relay: OFF"表示不工作 用手指点击 PV 图标进入 PV 实时参数画面,具体操作见 2.4.1 PV 实 时参数。
•	223.0 V 2.5 A Relay: ON	 显示市电输入电压、市电输入电流 线条的箭头方向显示市电能量的流动状态 圆弧 表示当前市电耗电功率占储能电源交流输出额定功率百分比 显示市电是否正常工作:表示市电正常工作,表示市电不工作 显示市电继电器状态("Relay: ON"表示市电继电器打开,"Relay: OFF"表示市电继电器关闭)。 点击市电图标进入市电实时画面,具体操作见 2.4.2 市电实时参数。

8	Inverter	 显示设备工作状态(Inverter 表示逆变工作状态,Grid 表示市电充电/市电旁路状态) 显示并机状态图标(当有2台以上的储能电源并联通信成功后才会显示,单机不显示)★ 点击设备图标进入设备信息画面,具体操作见2.4.3 设备实时参数。 		
•	235.0 V (显示负载的输出电压、输出电流 线条的箭头方向显示负载的能量流动状态 圆弧 当前负载功率占负载额定功率百分比 显示负载开关状态: 表示负载打开, 表示负载关 相 表示负载对并, 表示负载关 相 相 和 表示负载的用电量(即该储能电源从第一次开机后的负载累计用电量,如果数据被清零后,将会重新计数)点击负载图标进入负载实时画面,具体操作见		
0	52.0 V -2.0 A Standby 306 min	● 显示蓄电池的充放电电压、充放电电流 ● 线条的箭头方向显示蓄电池的能量流动方向 ● 显示蓄电池的工作状态: 表示蓄电池正常充放电,表示工作在无蓄电池模式 BMS 表示 BMS 通信正常, BMS 表示 BMS 有故障 (注: BMS 通信异常或未连接 BMS 时此图标不显示,故障列表显示"BMS 通信异常") ● 显示蓄电池 SOC 百分比数值 ● 圆弧 表示蓄电池 SOC 百分比 ● 显示充电状态,包括"Standby(待机)、Equalizing(均衡)、Floating(浮充)、Boosting(提升)"四种充电状态 ● 显示时间: 如果是充电状态或者剩余可用的放电时间大于 999 分钟,显示 MAX: 如果剩余可用的放电时间小于或等于 999 分钟,则显示具体的分钟数点击蓄电池图标进入蓄电池实时画面,具体操作见 2.4.5 蓄电池实时画面。		
•	<u>O</u>	表示当前系统无故障。 表示当前系统发生了故障,点击该图标可查看实时故障信息。具体操		
®		作见 2.4.6 实时故障信息。 表示开启一体机 COM 口 5V 供电,可外接蓝牙或 WiFi 模块。		

注: 当 PV 或市电充电时,蓄电池会根据储能电源内部时钟默认在每个月 28 日 06:00 (日期可修改) 进行

均衡充电。

★并机状态图标: 当有 2 台以上的储能电源并联通信成功后显示此图标,单机不显示。并机状态图标各字母表示的含义如下:

注意: 主机、从机是随机定义的。

2.4 界面

2.4.1 PV 实时参数

在流程图画面用手指触摸 进入 PV 实时参数界面,界面显示信息说明如下:

图标	说明		
165.0 V 2116.8 W 12.6 A 167.0 V 1336.0 W	 PV 输入电压、输入电流 PV 能量流动指示 PV 实时功率 若只有一路 PV 输入时,此处仅显示一个 PV 图标。 		
3.45 KW -25.6 °C	1. PV 发电总功率(若只有一路 PV 输入则不显示) 2. PV 模块温度(由 PV 机内散热器 (DC/DC 散热器)进行温度采样)		

OVD: OVR: UVP: UVR:	500.0 V 480.0 V 80.0 V 100.0 V	用手指在此区域内上下滑动查看光伏模块的所有设定参数。 参考"2.5.1 参数列表 > 1. PV (光伏常规参数设置界面)"查看光伏模块设定参数。
PV1 Today : PV1 Month : PV1 Year : PV1 Total :	18.8 KWh 18.8 KWh 18.8 KWh 18.8 KWh	用手指在此区域内上下滑动查看光伏模块的日、月、年、总发电量统 计。

70.0 Hz

2.4.2 市电实时参数

进入市电实时参数界面,界面显示信息说明如下:

图标	说明
233.0 V 2.5 A 50.8 Hz 582.5 W	1. 市电输入电压、电流、频率 2. 市电能量流动指示 3. 消耗市电功率(箭头指向储能电源)
OVD: 265.0 V OVR: 255.0 V UVD: 175.0 V UVR: 185.0 V OFD: 70.0 Hz	用手指在此区域内上下滑动查看市电的所有设定参数。 参考"2.5.1 参数列表 > 3. Grid (市电常规参数设置界面)"查看市电设定参数。
Today Consumption :	显示市电的日、月、年、总耗电量统计。

2.4.3 设备实时参数

在流程图画面用手指触摸 进入设备实时参数界面,界面显示当前产品系列、产品型号、SN、LCD PCB

版本、LCD 固件版本等产品信息。点击 / 显示设备其他参数。

2.4.4 负载实时参数

在流程图画面用手指触摸 进入负载实时参数界面。

点击 *Fun* 依次显示 Payload Realtime Data(负载实时数据页)、Setting Parameters To Display(负载设定参数页)、Parallel Real-Time Data(并机实时数据页)。点击 *Page* 轮流显示当前页面的全部信息。

2.4.5 蓄电池实时参数

在流程图画面用手指触摸 进入蓄电池实时参数界面,界面显示信息说明如下:

图标	说明
Other Setting BATTOFT: Have BATType: LEP16S BRV: 48 V Li PROT: enable Comm: OK Chrg CTRL: VOLT	1. 点击 / 是显示下一个页面,依次显示 Other Setting(蓄电池其他设定参数页)、BMS Data(BMS 数据页)、Voltage Setting(蓄电池电压设定参数页)、SOC Setting(蓄电池 SOC 设定参数页)。 2. 点击 NEXT Page 显示当前页面的全部信息。
50%	显示电池的 SOC 值,点击该图标显示如下 BMS 状态数据:各数据详细释义见 <u>附录二 BMS 状态数据对照表。</u> Sattery Charging protection Charging protection Communication error Country State Charging protection Charge overtemperature Charge overtemperature Databage overtemperature Line 1/4 Down Last Back Line Down Line Back Line Back Line Down Line Back Line Line
WOL VOL	界面。 1. 指示当前设置的电池协议是否支持大电流。 表示协议不支持大电流。 持大电流。 表示支持。 2. 指示"BCCMode (策略选择)"的设定值。 VOL 表示"BCCMode (策略选择)"设定为"VOL (电压)", 家区 表示"BCCMode (策略选择)"设定为"SOC"。
Voltage: 57.8 V Current: 10.5 A Power: 606.9 W Temp: 26.8 °C Status: Boosting	显示电池的实时数据: 电压、电流、功率、电池温度、充电状态。
BMS VOL CUR	 数字 27 表示当前锂电池的 "BMSProt (BMS 协议号)"。 BMS 表示 "BMS (BMS 使能)"的设定值,灰色表示不使能,绿色表示使能。 VOL 表示 "BMSVolt (BMS 电压控制)"的设定值,灰色表示不使能,绿色表示使能。 CUR 表示 "BMSCurr (BMS 电流控制)"的设定值,灰色表示该参数设置为 "Invalid (无效)",绿色表示该参数设置为 "BMS"。

2.4.6 实时故障信息

若当前系统无故障发生,流程图显示

若当前系统有故障发生, 流程图显示

, 用手指触摸该图标进入实时故障列表。

点击 Fun 依次显示"Real-time Error Code (实时故障)、Historical Error Code (历史故障)"。

点击 Clear 清除当前故障列表(只有系统故障清除成功后,故障信息才会清除:否则实时故障列表不会清 空)。

如果当前页面上有 **Up** 或 **Down**,点击按钮显示当前项目(如"历史故障")的上一页,下一页信息。

2.5 参数设置

2.5.1 参数列表

1. 在流程图画面,点击右上角的

2. 进入密码输入界面,输入正确密码(系统初始 密码默认为 000000), 点击 OK 或者数字 键盘上的 √ 进入参数设定界面。


参数设定画面包括: PV (光伏常规参数设置界面)、Charge (电池充电控制方式参数设置界面)、Grid (市电常规参数设置界面)、Load (负载常规参数设置界面)、System (系统参数设置界面)、Others (其它系统控制参数设置界面)、Set Password (密码界面)。在当前界面用手指上下滑动选择需要设置的参数项目,点击进入对应项目的参数设定画面。

点击 退出当前界面,返回流程图画面(通过此方式退出后,如果在5分钟内再次进入参数设定画面,不需要输入密码;若超过5分钟,则需要重新输入密码)。

点击 安全退出当前界面,返回到流程图画面(通过此方式退出后,再次进入参数设定画面,需要重新输入密码)。

1. PV (光伏常规参数设置界面)

在参数设定画面,点击 PV 进入光伏常规参数设置界面。界面显示信息如下:

图标	说明		
OVP 500.0 V	光伏常规参数默认值、可设置范围。手指上下滑动可查看当前页面下		
UVP 80.0 V Set UVPR 100.0 V Set	的所有参数。 有 Set 按钮表示该参数可自定义设置参数值,无 Set 按钮表		
OTP 75.0 °C	示该参数只读,不支持修改。		
** **	点击显示除当前屏幕外,其他可设置的界面(注: PV 可设置参数只有 当前屏幕,点击按钮无反应。)		

● 光伏常规参数默认值及设置范围见下表:

参数列表	默认值	设置范围	
Solar Setting Parameter (Solar Setting Parameter(光伏参数设置)		
OVP(PV 超压保护点)	500.0V	只读	
OVPR (PV 超压恢复点)	480.0V	只读	
UVP(PV 欠压保护点)	80.0V	自定义: 80.0V~ (PV 欠压恢复点-5V)	
UVPR(PV 欠压恢复点)	100.0V	自定义: 100.0~200.0V 或 (PV 欠压保护点+5V) ~200.0V 注: 取 100.0V 和 (PV 欠压保护点+5V) 中的最大值。	
OTP(PV 温度上限)	70.0℃	只读。PV 温度上限	
OTPR(PV 温度上限恢复)	65.0℃	只读。PV 温度上限恢复温度。	

2. Charge (电池充电控制方式参数设置界面)

在参数设定画面,点击 Charge 进入电池充电控制方式参数设置界面。界面显示信息如下:

	图标	说明	
OVD	64.0 V Set	电池电压/SOC 控制参数的默认值、可设置范围。手指上下滑动可查看	
CLV	60.0 V Set	当前页面下的所有参数。	
OVR	60.0 V Set		
ECV	58.4 V Set	有	
BCV	57.6 V Set	示该参数只读,不支持修改。	
<<	>>	点击显示电池电压点控制充电方式参数设置界面和电池 SOC 控制充	
		电方式参数设置界面。	

注:右侧参数设置区域的内容及操作方法,参考"1.PV(光伏常规参数设置界面)"的介绍。

注: 当 BMS 连接成功后,如下表格中的参数值从 BMS 直接读取,无法进行修改。如果需要修改如下表格中的参数值,需要先将"BMSVolt (BMS 电压控制)"改为"Disable (禁止)";有关参数 BMSVolt 的详细说明,见"5. System (系统参数设置界面)"。

● 电池充电控制参数默认值及设置范围见下表:

参数列表	默认值	设置范围	
2.1 Voltage Control Stra	2.1 Voltage Control Strategy(电压控制策略)		
OVD (超压断开电压)	59.2V	自定义: 充电限制电压<超压断开电压<16*N 注: N=系统电压等级/12。	
CLV (充电限制电压)	58.4V	自定义:均衡电压<充电限制电压<超压断开电压	
OVR(超压断开恢复电 压)	58.4V	自定义: 9*N≤超压断开恢复电压<(超压断开电压-0.1*N)。注: N-系统电压等级/12。	
ECV (均衡电压)	57.12V	自定义:提升电压≤均衡电压≤充电限制电压	
BCV (提升电压)	57.12V	自定义: 浮充电压≤提升电压≤均衡电压	
FCV (浮充电压)	54.4V	自定义:提升恢复电压<浮充电压≤提升电压	

参数列表	默认值	设置范围	
BVR (提升恢复电压)	53.28V	自定义: 低压断开恢复电压<提升恢复电压<浮充电压	
LVR(低压断开恢复电 压)	52.0V	自定义: 低压断开电压<低压断开恢复电压<提升恢复电压	
UVWR(欠压报警恢复 电压)	51.2V	自定义: (欠压报警电压+0.1*N) <欠压报警恢复电压≤ 低压断开恢复电压。注: N=系统电压等级/12。	
UVW (欠压报警电压)	49.6V	自定义:放电限制电压《欠压报警电压《(欠压报警恢复电压-0.1*N)。注:N=系统电压等级/12。	
LVD (低压断开电压)	46.4V	自定义:放电限制电压《低压断开电压《低压断开恢复电压	
DLV (放电限制电压)	44.0V	只读	
AUX OFF(停止辅助充 电电压)	56.0V	在 "Solar > Grid(太阳能优先)" 充电模式下,蓄电池电压 大于此电压则停止市电充电。 自定义: (恢复辅助充电电压+0.2*N)≤停止辅助充电电压 ≤(充电限制电压)。注: N=系统电压等级/12。	
AUX ON (恢复辅助充电电压)	51.0V	在 "Solar > Grid(太阳能优先)" 充电模式下,蓄电池电压 小于此电压则开始进行市电充电。 自定义: 低压断开电压≪恢复辅助充电电压≪(停止辅助充 电电压-0.2*N)。注: N=系统电压等级/12。	
2.2 SOC Control Strate	2.2 SOC Control Strategy (SOC 控制策略)		
FCP(充满保护 SOC)	100%	仅"BCCMode(策略选择)"设置为"SOC"时有效。电池 SOC值大于或等于该 SOC值,储能电源自动停止充电。自定义:(充满保护恢复 SOC+5%)~100%或 80%~100%注:取(充满保护恢复 SOC+5%)和 80%中的最大值。在 SOC模式下充电到 100%时,电池充电使能关闭;BMS 上报充电使能关闭同时 BMS 图标变为红色。	
FCPR(充满保护恢复 SOC)	95%	仅 "BCCMode(策略选择)"设置为 "SOC"时有效。电池 SOC 值小于该 SOC 值,储能电源自动开始充电。 自定义: 60%~(充满保护 SOC-5%)	
LPAR(低电量告警恢复 SOC)	40%	仅 "BCCMode(策略选择)" 设置为 "SOC" 时有效。 不可单独设置(等于 "DPR(放电保护恢复 SOC)")	
LPA(低电量告警 SOC)	25%	仅"BCCMode(策略选择)"设置为"SOC"时有效。 自定义: 10%~35%或 10%~(放电保护恢复 SOC -5%) 注:取 35%和(放电保护恢复 SOC -5%)中的最小值。当电 池 SOC 低于"LPA(低电量告警 SOC)"时,蓄电池图标变 为黄色,警示电池低电量。	

参数列表	默认值	设置范围
DDD / * + /1 * + /5		仅 "BCCMode(策略选择)"设置为 "SOC"时有效。
DPR (放电保护恢复 SOC)	40%	自定义: (放电保护 SOC+5%)~60% 或 20% ~60%
300)		注:取(放电保护 SOC+5%)和 20%中的最大值。
		仅 "BCCMode(策略选择)"设置为 "SOC"时有效。电池
		SOC 值小于该 SOC 值,储能电源自动停止放电。
DP(放电保护 SOC)	10%	自定义: 0~30%
		注: 当电池 SOC 到达 "DP (放电保护 SOC)"时,蓄电池图
		标变为红色,警示放电保护。
LIAC ON / まれは明末中		仅 "BCCMode(策略选择)"设置为 "SOC"时有效。
UAC ON (市电辅助充电 开启 SOC)	30%	自定义: 20%~50% 或 20%~(市电辅助充电关 SOC-10%)
		注:取 50%和(市电辅助充电关 SOC-10%)中的最小值。
	60%	仅 "BCCMode(策略选择)"设置为 "SOC"时有效。
UAC OFF(市电辅助充 电停止 SOC)		自定义: (市电辅助充电开 SOC+10%)~100% 或
		40%~100%
		注:取(市电辅助充电开 SOC+10%)和 40%中的最大值。
C-+ COC (COC)小男体)	不固定,实时	只读,在 BMS 有效并且通信正常时,自动将 BMS 的实时
Set SOC (SOC 设置值)	更新	SOC 值上传到储能电源。

3. Grid (市电常规参数设置界面)

在参数设定画面,点击 Grid 进入市电常规参数设置界面。界面显示信息如下:

	图标	说明			
UOD	280.0 V				
UOR	270.0 V	市电常规参数默认值、可设置范围。手指上下滑动可查看当前页面下			
ULVD	175.0 V Set	的所有参数。 有 Set 按钮表示该参数可自定义设置参数值,无 Set 按钮表			
ULVR	185.0 V Set	行			
UOF	70.0 Hz Set	小汉多数八块, <u>个</u> 又时形以。			
((>>	点击显示除当前屏幕外,其他可设置的界面(注:市电可设置参数只			
- "		有当前屏幕,点击按钮无反应。)			

注:右侧参数设置区域的内容及操作方法,参考"1.PV(光伏常规参数设置界面)"的介绍。

● 市电常规参数默认值及设置范围见下表:

参数列表	默认值	设置范围
3.1 Grid Setting Parameter	(市电参数设置)	
UOD (市电超压断开电压)	280.0V	只读
UOR (市电超压恢复电压)	270.0V	只读
ULVD (市电欠压断开电压)	175.0V	自定义: 90.0V~(市电欠压恢复电压-10V)
ULVR (市电欠压恢复电压)	185.0V	自定义: (市电欠压断开电压+10V)~220.0V
UOF (市电超频率断开频率)	70.0Hz	在旁路状态下,当市电输入频率大于此频率时,切换至逆变输出状态。自定义: 52.0~70.0Hz 或(欠频率断开频率+0.5Hz)~70.0Hz。注: 取 52.0Hz 或(欠频率断开频率+0.5Hz)中的最大值。
UFD (市电欠频率断开频率)	40.0Hz	在旁路状态下,当市电输入频率小于此频率时,切换至逆变输出状态。自定义:40.0~58.0Hz 或 40.0Hz~(超频率断开频率-0.5Hz)。注:取 58.0Hz 或(超频率断开频率-0.5Hz)中的取小值。

4. Load (负载常规参数设置界面)

在参数设定画面,点击 Load 进入负载常规参数设置界面。界面显示信息说明如下:

图标	说明
INVOVL	负载常规参数默认值、可设置范围。手指上下滑动可查看当前页面下的所有参数。 有 Set 按钮表示该参数可自定义设置参数值,无 Set 按钮表示该参数只读,不支持修改。
~~ >>	点击显示除当前屏幕外,其他可设置的界面(注:负载可设置参数只 有当前屏幕,点击按钮无反应。)

注:右侧参数设置区域的内容及操作方法,参考"1.PV(光伏常规参数设置界面)"的介绍。

负载常规参数默认值及设置范围见下表:

参数列表	默认值	设置范围
4. 1 Load Setting Parameter	(负载参数设置	1)
INVOVL(逆变输出电压等级)	220V	自定义: 220V / 230V
INVOFR(逆变输出频率等级)	50Hz	自定义: 50Hz / 60Hz 注: 当连接市电且检测到市电频率后,进入市电旁路输出状态时,将按照市电频率输出。单机"INVOFR(逆变输出频率等级)"修改完成后,立即生效。在并机系统下,必须关机10s后再重新启动储能电源,才能使修改生效(可再次进入"Load Setting Parameter"负载参数设置画面,检查设置是否生效)。
Load CL(输出负载限流值)	42.0A	只读。
INVOP(逆变高压保护点)	265.0V	只读。
INVOPR(逆变高压恢复点)	255.0V	只读。
TempUL(温度上限)	85.0℃	只读。
TempULR(温度上限恢复)	80.0°C	只读。

5. System (系统参数设置界面)

在参数设定画面,点击 System 进入系统参数设置界面。界面显示信息如下:

图标	说明
Status	系统参数默认值、可设置范围。手指上下滑动可查看当前页面下的所有参数。 有 Set 按钮表示该参数可自定义设置参数值,无 Set 按钮表示该参数只读,不支持修改。
<	点击显示电池基本参数、电池高级参数、充放电管理参数、系统时间、本机参数设置界面。

数值型参数设置方法参考"1. PV (光伏常规参数设置界面)"的介绍。

● 系统参数默认值及设置范围见下表:

参数列表	默认值	设置范围	
5.1 Battery Basic Properties(蓄电池基本参数设置)			
Status(电池状态)	Have	自定义: Have, NO 注: 当参数值变更时(即从有蓄电池改为无蓄电池,或 从无蓄电池切换到有蓄电池),储能电源交流输出会切 断约3秒后再正常输出。	
BDCap(蓄电池总的容量)	100.0 AH	自定义: 10.0AH~2400.0AH	
BType(电池类型)	LFP16S	只读	
BRV(电池电压等级)	48 V	只读	
LBACC(本地蓄电池允许充电电流)	100.0A	自定义: 5.0~100.0A HP5542F-AH1050P30C 允许电池端最大的充电电流 值	
LBADC(本地蓄电池允许放电电流)	250.0A	自定义: 10.0~250.0A HP5542F-AH1050P30C 允许电池端最大的放电电流 值	
BECT(蓄电池均衡充电时间)	120 m	自定义: 10~180 分钟	
BECD(均衡日期)	28 D	自定义: 1~28	
BBCT(蓄电池提升充电时间)	120 m	自定义: 10~180 分钟	
BTCC(蓄电池温度补偿系数)	3 mV/°C/2V	自定义: 0~9 注: 预留选项,对本系统无效。	
5.2 Advanced Battery Properties(蓄电池高级参数设置)			
Li PROT(锂电池保护使能)	Disable	自定义: Disable(禁止), Enable(使能) 设置为"Enable(使能)"时,低温禁止充放电功能方有效。	
LTSChrg(低温禁止充电温度)	0 ℃	自定义: -20.0℃~0℃ 当环境温度或蓄电池温度低于该值时,储能电源停止充电。	
LTSDischrg(低温禁止放电 温度)	0 ℃	自定义: -20.0℃~0℃ 当环境温度或蓄电池温度低于该值时,储能电源停止放电。	

参数列表	默认值	设置范围	
BATT OTP(蓄电池温度上限)	50.0 ℃	自定义: (蓄电池温度上限恢复温度+5℃)~60.0℃	
BATT OTPR(蓄电池温度 上限恢复温度)	45.0 ℃	自定义: 30.0℃~(蓄电池温度上限-5℃)	
Chrg(电池充电使能)	Enable	只读	
Dischrg(电池放电使能)	Enable	只读	
PCUP(三相电流不平衡保护使能)	Disable	自定义: Disable(禁止), Enable(使能)。注: 仅在设置 三相输出时有效。变更设置值后, 进行恢复出厂设置无 法恢复成默认值, 若要设置成默认值须手动设置。	
INVPSet(逆变器相位设置)	S	自定义: S(单相), A(A 相), B(B 相), C(C 相) 注: "INVPSet(逆变器相位设置)"修改完成后,必须关机 10s 后再重新启动储能电源,再次进入 "System》 Advanced Battery Properties"画面,检查设置是否生效。变更设置值后,进行恢复出厂设置无法恢复成默认值,若要设置成默认值须手动设置。	
UCD(不平衡电流差值)	5 A	自定义: 0~6000A 注: 仅在设置三相输出时有效, 当使能 "PCUP(三相电流不平衡保护使能)"后, 如果任意两相的电流差大于此设置值,设备将自动关闭负载输出。变更设置值后,进行恢复出厂设置无法恢复成默认值,若要设置成默认值须手动设置。	
5.3 Charge and Discharge Management(充放电管理)			
BACC(蓄电池允许充电电流)	100.0A	只读(当BMS 设置为使能且储能电源与锂电池的BMS 通信正常时,该参数值为读取BMS 的数据;否则,每次开机后该参数值等于LBACC 的设置值。若LBACC 更改后没有重新开机,该参数为LBACC 修改前的值。)	
BADC(蓄电池允许放电电流)	250.0A	只读(当BMS 设置为使能且储能电源与锂电池的BMS通信正常时,该参数值为读取BMS的数据;否则,每次开机后该参数值等于LBADC的设置值。若LBADC更改后没有重新开机,该参数为LBADC修改前的值。)	
UACC(市电允许充电电流)	100.0A	自定义: 5.0~100.0A HP5542F-AH1050P30C 市电充电蓄电池端的电流。	

参数列表	默认值	设置范围
CMode(充电模式)	Solar+Grid	自定义: Solar(仅太阳能充电), Solar > Grid(太阳能优先), Solar+Grid(太阳能加市电), Grid > Solar(市电优先)。注: 具体工作模式差异见章节 5 工作模式。
DMode(放电模式)	PV>BT>BP	自定义: PV>BP>BT(即太阳能>旁路>蓄电池), PV>BT>BP(即太阳能>蓄电池>旁路), BP>PV>BT (即旁路>太阳能>蓄电池) 注: 具体工作模式差异见章节 5 工作模式。
ACmode (AC 模式)	Grid	自定义: Grid(市电模式), Oil(发电机模式) 当输入的交流源为发电机时,需把该模式设置为"Oil(发 电机模式)", 可提高储能电源的充电能力。 注: 若设置的交流输入模式与输入的交流源不匹配,会 影响储能电源的正常工作。设置完成后,必须重启储能 电源使设置生效。建议油机额定功率大于一体机额定功 率 1.5 倍以上。
PVMode(PV 模式)	Single	自定义: Single(全独立), Parallel(全并联) 当两路 PV 阵列各自独立输入时需设置为"Single(全独立)"模式。当两路 PV 阵列并联为一路接入储能电源时(需对储能电源的 PV 端子进行外部并联),需设置为"Parallel(全并联)"模式。 只有一路 PV 输入的产品型号默认值为"Single(全独立)"(其他设置无效)。
BCCMode(策略选择)	soc	自定义: VOL(电压), SOC 电压: 当"BCCMode(策略选择)"设置为"VOL(电压)"时,电池电压控制点相关参数有效。 <u>SOC</u> : 当"BCCMode(策略选择)"设置为"SOC"时, SOC 相关参数有效。 注: 若选择"SOC",电池需要经历多个完整的充放电循环,且电池容量必须设置正确。若需修改各电池电压控制点参数值,必须先将"BMSVolt (BMS 电压控制)"设置为"Disable(禁止)",否则无法修改。
BMSProt(BMS 协议号)	27	只读
BMS (BMS 使能)	Enable	自定义: Disable(禁止), Enable(使能) 当该参数设置为 "Enable(使能)" 时,储能电源可以与 电池包进行正常通信。

参数列表	默认值	设置范围
BMSVolt (BMS 电压控制)	Enable	自定义: Disable(禁止), Enable(使能) 当该参数设置为 "Enable(使能)"时, BMS 内部电压 控制参数将自动同步到本储能电源中,储能电源根据这 些参数控制蓄电池充放电。
BMSCurr (BMS 电流控制)	BMS	自定义: Invalid (无效), BMS 当该参数设置为 "Invalid (无效)" 时,储能电源将根据 表头设置值进行充放电控制。当该参数设置为 "BMS" 时,储能电源将根据读取到的 BMS 充放电电流值进行 充放电控制。
BMSFail(BMS 失效动作)	DSP	自定义: DSP (本机), Disable(禁止) <u>DSP</u> : 按照本机默认模式及参数值运行。 <u>Disable</u> : 设备不充电不放电,等效于待机模式。
BCM(电池接入方式)	Only	自定义: Only(独立)或 Share(共享) 注: 仅在储能电源并联时有效,请勿随意设置。
5.4 System Time Setting	(系统时间设定)	
5.5 Local Parameters (本	机参数设置)	
LCD BRT (人机交互时 LCD亮度值)	100%	自定义: 50%~100% 正在操作 LCD 时,LCD 的亮度。
TODelay(无操作退出延时时间)	15 S	自定义: 6~60S 不操作 LCD 后,设定的 "TODelay"时间到, LCD 亮 度降低到设定的"LCDSBRT"亮度。
LCDSBRT(待机时屏幕的 亮度值)	50%	自定义: 35%~100% LCD 无操作超过 "TODelay" 时间后的 LCD 亮度。
SOT (待机时进入熄屏的延时)	30 S	自定义: 15~60S 若 "Screen TO"设置为"ON",LCD 无操作超过 "TODelay"时间后又超过"SOT"时间,LCD 熄灭。
Com ID (通信 ID 号)	1	自定义: 1~240
Com BPS (通信波特率)	115200bps	自定义: 9600, 19200, 38400, 57600, 115200, 256000
DCT ON(干接点打开电压)	44.0V	自定义: 9*N~(干接点关闭电压-0.2*N) (N=电压等级 /12) 当蓄电池电压小于该设定电压时,干接点开关闭合。
DCT OFF(干接点关闭电压)	50.0V	自定义: (干接点打开电压+0.2*N)~17*N (N=电压等级 /12) 当蓄电池电压大于该设定电压时,干接点开关断开。
Switch BMS (允许 BMS 控制充电)	Enable	只读

参数列表	默认值	设置范围
Buzz(蜂鸣器告警开关)	ON	自定义: ON(使能), OFF(禁止) 若设置为 "ON(使能)", 发生故障时蜂鸣器响, 故障消除后, 蜂鸣器自动静音。若设置为 "OFF(禁止)", 即使发生故障, 蜂鸣器也不会响。
LED(LED 指示灯开关)	ON	自定义: ON(使能), OFF(禁止) 当设置为"OFF(禁止)"时, LED 指示灯熄灭。
HRI(历史记录间隔)	60S	自定义: 1-3600S 设置历史记录的时间间隔(仅指定时存储的电压、电流 等历史数据,不包括历史故障; 这些历史数据可通过 Solar Guardian PC 上位机软件或者 WEB 网页导出。)

6. Others (其它系统控制参数设置界面)

在参数设定画面,点击 Others 进入其它系统控制参数设置界面。

点击 / 切换页面,通过触屏操作直接设置相关参数。

其它系统控制参数默认值及设置范围见下表:

参数列表	默认值	设置范围
6. Others (其他参数)	2置)	
Wireless(内置通信模 块使能)	OFF	不可修改(预留选项)
RTU Power (COM 接 口 5V 电源使能)	ON	自定义: OFF、ON 控制储能电源 COM 口开启与关闭 5V 供电,设置为"ON"后外接蓝牙或 WiFi 模块才能工作。
Screen TO(自动熄 屏)	ON	自定义: ON、OFF LCD 背光开关。设置为 "ON"时,经过"TODelay"时间加 "SOT"时间后,LCD 背光关闭。设置为"OFF"时,LCD 背 光常亮。

参数列表	默认值	设置范围
Parameter Reset(参 数复位)	Normal Mode	自定义: Normal Mode、Standby Mode 设置参数复位:选择"Standby Mode"后按点击"Factory Reset" 按钮,可将部分设置参数恢复成出厂默认值(包括密码设置)。
Low Power Mode (低功耗模式)	ECO Mode	自定义: ECO Mode、Normal Mode 选择 "ECO Mode"时,符合一定的条件后,如无 PV 和市电, 蓄电池欠压后,储能电源进入低功耗模式,以降低系统损耗。 选择"Normal Mode"则不进入低功耗模式;若设置为"Normal Mode",重新开机后自动恢复为"ECO mode"。
Manual Equalizer (手 动均衡)		在 "Low Power Mode(低功耗模式)" 界面,按下 "Manual Equalizer" 按钮后,储能电源进入手动均衡充电状态;此时若重新开机后,储能电源将自动退出手动均衡充电状态。 注:该功能与 Low Power Mode 选择 ECO Mode 还是 Normal Mode 无关。
DC Source Characteristic (直流 源特性)	PV Source	自定义: PV Source、DC Source 当使用直流电源替代 PV 阵列进行供电测试时,需要选择为"DC Source",否则储能电源无法正常工作。选择为"DC Source" 时,PV 指示灯会绿灯闪烁:选择为"PV Source"时,PV 指示灯会绿灯常亮。若设置为"DC Source",重新开机后将自动恢复为"PV Source"。
Initializing Records (清除故障)		在 "DC Source Characteristic(直流源特性)"界面,按下 "Initializing Records"按钮,约 40S 后清除历史故障记录。 注:该功能与 DC Source Characteristic 选择 DC Source 还是 PV Source 无关。
Clear Statistical Power (累计电量清零)	Day Month Year	自定义: Day Month Year、Total Generation 选择"Day Month Year"或"Total Generation"后,按下"Clear" 按钮可清除对应的电量累计值。

7. Set Password (密码界面)

- 1. 在参数设定界面,点击 Set Password 进入密 码修改界面。
- 2. 输入原密码,新密码,点击 Update 讲入再 次输入密码的界面。

OK

- 注: 密码可修改为空或者其他不超过 6 位数的任意数字。密码为空即在修改密码时不输入任何数字。
- 8. Quick setting of BMS parameters (BMS 参数快速设置界面)

注: BMS 参数快速设置界面无需管理员密码, 可以快速设置 BMS 相关参数(当前为预留功能, 暂无法设置)。

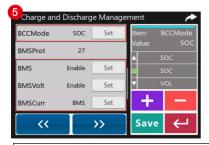
2.5.2 蓄电池工作模式

当系统使用带 BMS 及充放电末端电流控制的锂电池,且该锂电池可以和储能电源进行正常通信的场景下, 正确设置如下表格中的参数值。储能电源根据读取到的 BMS 充放电电流值进行充放电控制。

LCD 界面	参数名称	设置值
Battery Basic Properties (蓄电池基本参数设置)	BDCap(蓄电池总的容量)	根据实际使用的锂电池数量进行设置。
Charge and Discharge Management	BCCMode(策略选择)	默认为 "SOC", 可根据实际需求设置为 "VOL(电压)", 储能电源根据设置的电池 电压点参数或者 SOC 参数控制充放电。
(充放电管理)	BMS(BMS 使能)	Enable(使能)
	BMSVolt(BMS 电压控制)	Enable(使能)
	BMSCurr(BMS 电流控制)	BMS

注: "BMS (BMS 使能)、BMSVolt (BMS 电压控制)、BMSCurr (BMS 电流控制)"的出厂默认值即为如上表格要求 的设置值,正常情况下无需进行设置。如果您在实际使用过程中修改了这三个参数的默认值,请按如上表 格重新设置。

1. 在流程图画面,点击右上角的


2. 进入密码输入界面,输入正确密码(系统初始 密码默认为 000000), 点击 讲入参数 设定界面。

3. 手指在当前界面上下滑动,点击 "System"进 入系统参数设置界面。

4. 根据实际使用的锂电池数量,设置"BDCap(蓄 电池总的容量)"。设置完成后,点击 Save 下发 新参数值。

当 "BMSCurr (BMS 电流控制)"设置为 "Invalid (无效)"或者当锂电池与储能电源的通信中断后,储能电源将根据表头设置值或通信中断前读取的 BMS 电流值进行充放电控制。

2.5.3 电池电压控制点参数

当"蓄电池设置模式"选择为"专家模式"时,所有电池电压控制点参数均可设置。

电压控制点	LFP16S (磷酸铁锂 16 串)	自定义设置范围
超压断开电压	59.2V	42.8~64V
充电限制电压	58.4V	42.8~64V
超压断开恢复电压	58.4V	42.8~64V
均衡电压	57.12V	42.8~64V
提升电压	57.12V	42.8~64V
浮充电压	54.4V	42.8~64V
提升恢复电压	53.28V	42.8~64V
低压断开恢复电压	52.0V	42.8~64V
欠压报警恢复电压	51.2V	42.8~64V
欠压报警电压	49.6V	42.8~64V
低压断开电压	46.4V	42.8~64V
放电限制电压	44.0V	固定值不可设

当设置锂电池的电压控制点时,必须遵循如下逻辑:

- A. 超压断开电压<过充保护电压(锂电池保护板)-0.2V;
- B. 超压断开电压>充电限制电压≥均衡电压≥提升电压≥浮充电压>提升恢复电压;
- C. 超压断开电压>超压断开恢复电压
- D. 提升恢复电压>低压断开恢复电压>低压断开电压≥放电限制电压;
- E. 欠压报警恢复电压>欠压报警电压≥放电限制电压;
- F. 低压断开电压≥过放保护电压(锂电池保护板)+0.2V。

警示

锂电池保护板的控制精度要求至少为±0.2V,超压断开电压小于保护板的保护电压,低压断开电压高于保护板的保护电压,超压断开电压和低压断开电压的增加值需根据保护板的精度而定。

3 系统安装

3.1 安装注意事项

在安装之前,请仔细阅读本手册,熟悉安装步骤。

- 在拆开外包装之前,请检查外包装是否有可见的损坏,如孔、裂纹或者其他内部可能损坏的迹象,并 且核对设备型号。如果有任何包装异常的情况或设备型号不符,请勿拆开,并尽快联系您的经销商。
- 在拆开外包装之后,请检查交付件是否完整齐备,有无任何明显的外部损坏。如果缺少任何物件或存 在任何损坏,请联系您的经销商。
- 安装和使用环境需要符合当地法律法规及相关国际国家、地区标准中对锂电产品的规定。
- 安装在干燥、通风良好的环境下,并防止灰尘及水汽的侵蚀。
- 请选择带遮挡的安装地点,或者搭建遮阳棚,避免阳光直射或雨淋。
- 安装位置远离易燃易爆物品。
- 安装位置距离热源至少超过2米。
- 安装位置 儿童不可接触, 远离日常工作、生活起居区域。
- 安装位置四周环境清洁,不存在大量红外线放射线辐射、有机溶剂及腐蚀气体等。
- 在洪水、泥石流、地震、台风等自然灾害频发区域,安装时需要采取相应的防范措施。

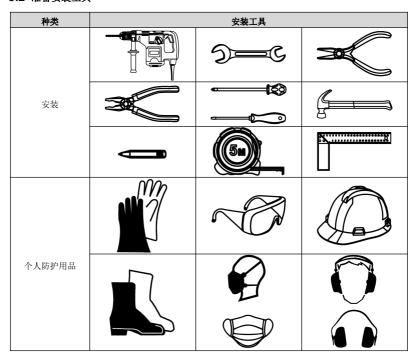
在安装储能电源之前、确认储能电源无电气连接。

• 爆炸的危险!不要将储能电源和铅酸液体蓄电池安装在同一个密闭的空间内!也不 要安装在一个蓄电池气体可能聚集的密闭的地方。

• 不可将储能电源前倾、倒置、后仰以及侧倾安装。

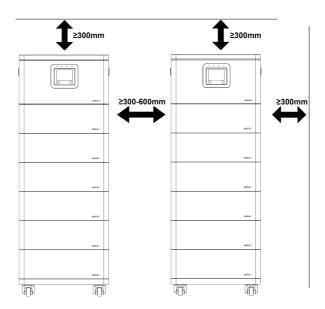
- 严禁将储能电源安装在潮湿、高盐雾、腐蚀、油腻、易燃易爆或粉尘大量聚集等恶 劣环境中。
- 如果环境温度超出锂电池的工作范围,锂电池将停止运行。锂电池工作的温度范围 为充电: 0~+50°C; 放电: -20~+50°C (最佳工作温度 25±2°C)。 经常暴露在恶劣 的温度下可能会降低锂电池的性能和寿命。

• 锂电池附近不要放置金属物件、避免锂电池发生短路。



• 确认环境周围通风良好。

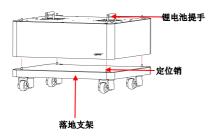
- 安装时, 在储能电源周围留有足够的空间进行散热。
- 储能电源工作时,会产生大量的热量,外壳温度很高,请勿触摸,且远离受高温影 响的材料或设备。
- 搬运重物时,应做好承重的准备,以免被压伤或扭伤。



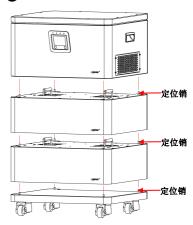
3.2 准备安装工具

3.3 选择安装位置

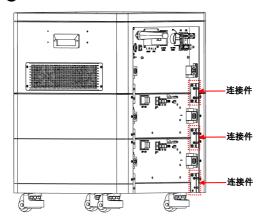
安裝储能电源时,确保周围没有其他设备以及易燃、易爆物品。应预留足够的空间(储能电源距离上面和 左右两侧至少应留有300mm的空间),以保证安装散热、安全隔离要求。


3.4 安装储能电源

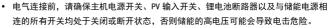
将锂电池和主机由下而上依次堆叠安装到底座支架上。如下以 10.24KWh 的储能电源为例介绍安装过程。 其余容量的储能电源安装方法相同,如 5.12KWh 储能电源安装 1 个锂电池,10.24KWh 储能电源安装 2 个锂电池······30.72KWh 储能电源安装 6 个锂电池。



安装储能电源的破坏扭矩: M8≥12N.M, M3≥1.2N.M


1 将第一个锂电池对准定位销放在落地支架上。

2 自下而上安装剩余锂电池和主机。



3 完成锂电池和主机的堆叠后安装两侧连接件,并紧固螺钉。

4 储能电源电气连接

电气连接注意事项:

- 接线完成后,须检查线路连接是否紧实,虚接的连接点和腐蚀的电线可能造成发热融化电线绝缘层,燃烧周围的材料,引起火灾。需确认连接头已拧紧,建议用扎带固定好电线,避免移动应用时因电线摇晃而造成连接头松散。
- 市电输入和交流输出为高压电,请勿触摸接线处。
- 当风扇工作时,请勿触摸以防受伤。
- 只能给符合本储能电源的锂电池类型充电。
- 电源的开关关闭之后,储能电源内部仍有高压,请勿打开或触摸内部器件,待切断 输入输出线缆10 钟后进行相关操作。

- 不正确的接线导致的设备损坏,不在设备质保范围内。
- 电气连接的相关操作必须由专业电气技术人员进行。
- 在讲行电气连接时、操作人员必须佩戴个人防护用品。
- 本产品虽具有 DC 输入端极性反接保护(仅 HP5542F-AH1050P30C 主机具有此功能), 但该保护仅在未连接 PV 或市电时有效,请严格按照操作执行,勿频繁误操作。

4.1 接线规格和断路器选型

接线和安装方式遵守当地的电气规范要求。

建议的光伏阵列接线规格和断路器选型

由于光伏阵列的输出电流受光伏组件的类型、连接方式和光照角度的影响,因此光伏阵列的最小线径根据光伏阵列的最大短路电流来计算。请参考光伏组件规格书中的短路电流值(光伏组件串联时短路电流不变;并联时短路电流为并联组件的短路电流之和)。阵列的短路电流不能大于PV最大输入电流,PV最大输入电流和PV端最大线径请参考下表:

当两路光伏阵列单独连接时,每路光伏阵列的接线规格和断路器选型如下:

型号	建议的光伏阵列接线线径	建议的断路器型号
HP5542F-AH1050P30C	6mm ² /10AWG	2P—25A

当两路光伏阵列合并为一路进行连接时,接线规格和断路器选型如下:

型号	建议的光伏阵列接线线径	建议的断路器型号
HP5542F-AH1050P30C	10mm ² /7AWG	2P—50A

串联时申压不能大于最大 PV 輸入开路申压 500V(最低环境温度)、440V(25℃环境温度)。

> 建议的市电接线规格

型号	建议市电接线线径	建议的断路器型号
HP5542F-AH1050P30C	6mm ² /10AWG	2P—40A

建议的锂电池接线规格和断路器选型

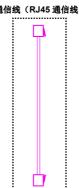
型号	锂电池接线线径	建议的断路器型号
HP5542F-AH1050P30C	27mm²/3AWG	2P—200A

断路器型号是根据锂电池端不单独另接储能电源的情况来选取的。

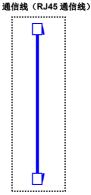
▶ 建议的AC输出接线规格

型号	建议负载接线线径	建议的断路器型号
HP5542F-AH1050P30C	6mm ² /10AWG	2P—40A

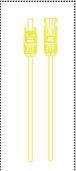
- 如果光伏阵列和储能电源之间的距离比较远时,使用更粗的线材可以降低压降以提高系统性能。
- 以上接线线径和断路器供参考,请根据实际情况来选取合适的接线线径和断路器。

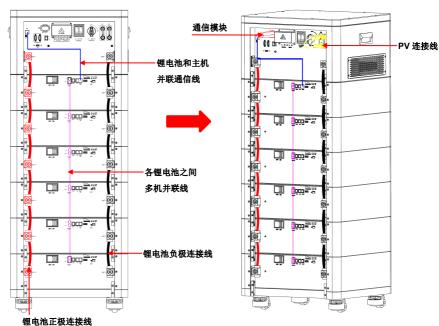

4.2 储能电源内部接线

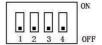
1 准备储能电源连接过程中需要用到的接线。


锂电池电源线(红+黑-)

在中心中微线(4.1·新)

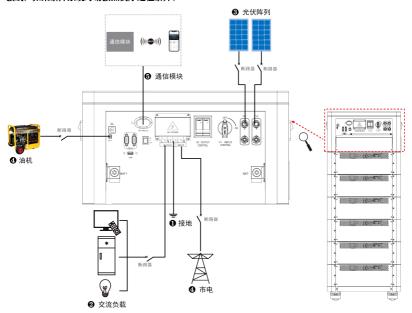

多台锂电池之间的并联 通信线(RJ45 通信线)


主机与锂电池之间的并联


PV 连接线

②将锂电池电源线(红+黑-)、多机并 联线(RJ45通信线)按下图位置连接。 **3** 将 PV 连接线、通信模块连接到 储能电源的指定位置。

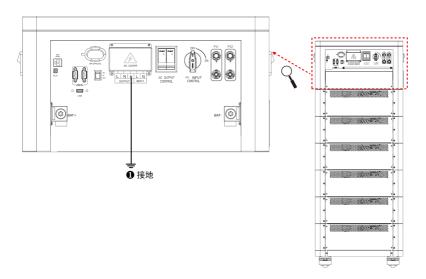
④ (可选操作)当多个锂电池并联使用时,需通过BMS上的拨码开关设置锂电池的通信地址。通信地址可设置为1~15内的任意数字,不可重复。但必须有一个锂电池设置为1(即锂电池主机),用来和主机进行通信连接。注:建议



将最靠近主机的那一台锂电池设置为1,方便接线。

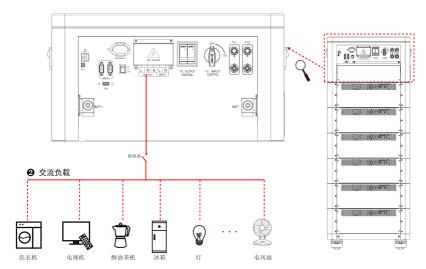
拨码开关 位置 通信 ID	#1	#2	#3	#4
0	OFF	OFF	OFF	OFF
1	ON	OFF	OFF	OFF
2	OFF	ON	OFF	OFF
3	ON	ON	OFF	OFF

4	OFF	OFF	ON	OFF
5	ON	OFF	ON	OFF
6	OFF	ON	ON	OFF
7	ON	ON	ON	OFF
8	OFF	OFF	OFF	ON
9	ON	OFF	OFF	ON
10	OFF	ON	OFF	ON
11	ON	ON	OFF	ON
12	OFF	OFF	ON	ON
13	ON	OFF	ON ON	
14	OFF	ON	ON ON	
15	ON	ON	ON ON	


4.3 储能电源外部接线

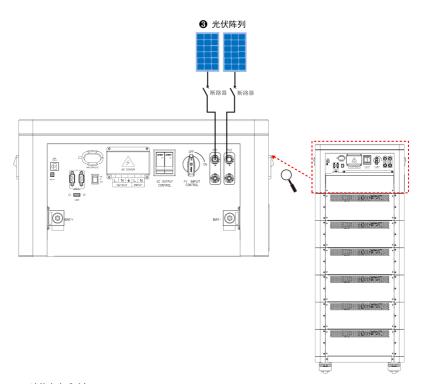
1. 接地

该储能电源的接地端子须正确可靠接地,要求接地线缆截面积与建议的负载接线线径保持一致,接地点尽量靠近储能电源,接地线越短越好。


	※ 禁止蓄电池正负极接地				
▼ 禁止接地	★止PV正负极接地				
	★止交流输入端L或N在储能电源至入户配电柜之间接地				
	★止交流输出端L或N接地				
☑ 必须接地	☑ 机箱机壳与交流输入及输出的PE端通过大地导轨接入大地				

2. 连接交流负载

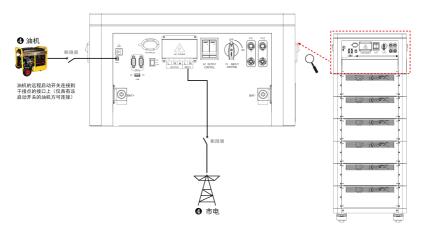
- 高压危险! 交流输出会产生很高的电压,接线过程中,请勿闭合断路器,同时确认 各部件的电极正确连接。
- 交流设备需根据储能电源的持续输出功率确定,交流设备的冲击功率不允许大于储能电源的可承受瞬时冲击功率,否则可能导致储能电源损坏。
- 若负载端连接电机等感性负载,或连接有双向转换开关,需在储能电源交流输出端单独安装过压过流保护器(VA-Protector)。


3. 连接光伏组件

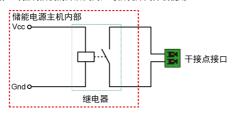
- 高压危险!光伏组件会产生很高的电压,接线过程中,请勿闭合断路器,同时确认 各部件的"+","-"极正确连接。
- 禁止 PV 正极或 PV 负极与大地连接, 否则会损坏储能电源。

如果储能电源应用于雷电频繁区域,需在 PV 输入端及市电输入端安装外部的避雷器。

4. 连接市电或油机

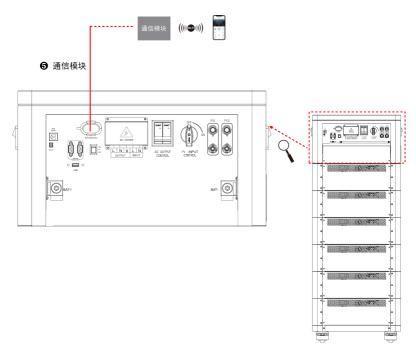


- 高压危险! 市电输入会产生很高的电压,接线过程中,请勿闭合断路器或快熔型保险,同时确认各部件的电极正确连接。
- 如果有市电接入,禁止将PV和蓄电池端接地,但储能电源外壳必须可靠接地。目的 是为了有效的屏蔽外部的电磁干扰,并防止外壳带电对人体造成电击伤害。


******=

油机种类繁多,输出情况复杂,推荐使用变频油机,如果使用非变频油机,需经实际测试后方可使用。

干接点接口介绍:

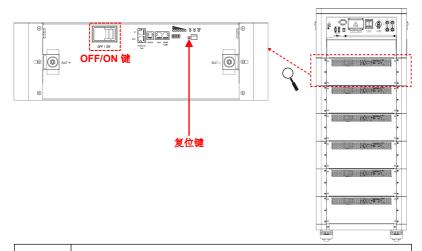

◆ 作用:该干接点接口可控制油机的开启关闭,与油机开关并联使用。

◆ 工作原理: 当电池电压等于"干接点开启电压"时,继电器的线圈通电,开关闭合。干接点可驱动阻性负载125VAC/1A,30VDC/1A。根据不同的电池类型,储能电源的干接点开启电压和干接点停止电压默认值不同;详细默认值可参考"4.5.1参数列表 > 5. System(系统参数设置界面)"的DCT ON(干接点打开电压)和DCT OFF(干接点关闭电压)。

5. 连接选配件(通信模块)

将 WiFi 等通信模块连接到储能电源的 RS485 通信接口,可在手机 APP 上远程监控储能电源、或对储能电源的 SS数进行设置。具体设置方法请参考云 APP、WiFi 等通信模块的说明书。

注:本系统具体支持的通信模块型号。请参考配套的配件清单文件。

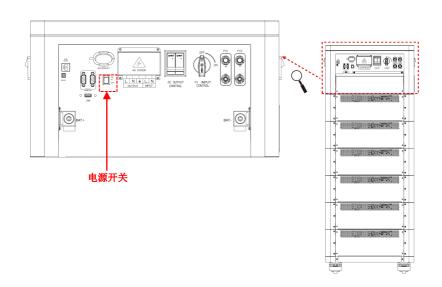

4.4 储能电源调测

步骤1: 检查接线。确认锂电池、PV模块的正负极接线连接正确,确认市电接线连接正确,确认各锂电池之间的并联通信线连接正确,确认锂电池和逆变器主机的通信线连接正确。

步骤2: 检查各锂电池的通信ID,确认各通信ID无重复,且与逆变器连接的锂电池通信ID设置为1。

步骤3: 将每个锂电池的OFF/ON键拨至ON位置。确认所有锂电池处于无激活状态(即锂电池的指示灯全 灭)。注意:不可在电池激活状态下直接闭合电池空开,否则会导致锂电池过流保护。

(可选)步骤4:按一下1号锂电池(即通信ID为1的锂电池)的"复位键",如下图所示。其他锂电池会自动激活。



- 1. 锂电池激活需 40 秒以上,请等激活完成后再进行下一步操作。
- 2. 当多个锂电池并联使用时,各锂电池的通信 ID 不能重复,且与逆变器连接的锂电池 通信 ID 必须设置为 1,否则无法成功通信。

注意:以电压最低的锂电池为基准,电压差在1.5V以内的锂电池自动并入系统;电压差在1.5V以上的锂电池无法并入系统。需要对该锂电池进行充电,当充电到电压差在0.5V以内时,该锂电池自动并入系统。

步骤5:接通储能电源的船型开关,LCD点亮即正常工作(当不进行步骤4的操作时,也可直接通过步骤5,激活整个系统)。

注意:LCD点亮后,屏幕上的BMS图标在BMS初始化过程中显示红色,初始化完成后显示绿色;整个初始化过程特续几分钟。

步骤 6: 通过表头按键进行参数设置。

具体设置内容详见章节2.5参数设置,若设置前有疑问请咨询相关技术人员。

步骤 7: 使用储能电源。

依次闭合负载断路器、光伏组件断路器、市电断路器。待AC输出正常后再逐一打开交流负载,以免因同时 开启负载产生较大的瞬间冲击而发生保护动作,储能电源将按照用户设置的工作模式运行;可通过LCD液 晶显示屏查看系统运行状态,详见章节2.4 界面。

警示

- 若给不同的交流负载供电,建议先打开冲击电流大的负载,待负载工作稳定后再打 开冲击电流小的负载。
- 如果储能电源无法正常工作或者LCD或指示灯显示异常,参考章节7_故障排除,或者联系我公司售后服务人员。

4.5 锂电池休眠及唤醒

4.5.1 锂电池休眠

当满足以下任意一条件时, 进入低功耗模式 (休眠模式):

注:进入休眠前,需要同时满足无对外通信,无充电器,锂电池放电电流小于 2A 的条件。

- 1) 单体或总体过放保护 30 秒内仍未解除。
- 2) 按 2 次复位键, 第 1 次不限时, 第 2 次按 3~6S 后松开按键(注: 并机下,需按 1 号锂电池的复位键 2 次)。
- 3) 待机时间超过设定时间(24H)。

4.5.2 锂电池唤醒

当系统处于低功耗模式,满足以下任意一条件时,系统将退出低功耗模式,进入正常运行模式:

- 1) 接入充电器, 充电器输出电压需大于 48V (且休眠时间大于 1 分钟)。
- 2) 按一下 1 号锂电池的复位键后松开按键。
- 3) RS485通信激活(锂电池与主机正常通信后激活)。

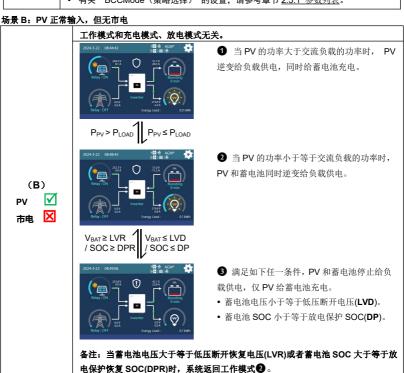
5 工作模式

5.1 缩写说明

缩写	说明			
P _{PV}	PV 的功率			
P _{LOAD}	负载的功率			
V _{BAT}	蓄电池的电压			
LVD	低压断开电压			
LVR	低压断开恢复电压			
DP	放电保护 SOC			
DPR	放电保护恢复 SOC			
AUX OFF	停止辅助充电电压(AUX OFF)(即市电充电停止电压)			
AUX ON	恢复辅助充电电压(AUX ON)(即市电充电开启电压)			
UAC OFF	市电辅助充电停止 SOC(UAC OFF)			
UAC ON	市电辅助充电开启 SOC(UAC ON)			
LBACC	蓄电池允许充电电流			
200	电池的充电状态,表示电池当前储存的电量与最大储存电量之间的			
SOC	比率。			
PV>BP>BT	放电模式:太阳能>旁路>蓄电池			
PV>BT>BP	放电模式:太阳能>蓄电池>旁路			
BP>PV>BT	放电模式: 旁路>太阳能>蓄电池			

5.2 有蓄电池工作模式

场景 A: 无 PV 且无市电输入



- 2 当满足如下任一条件, 蓄电池停止给负载供 电。
- 蓄电池电压小于等于低压断开电压(LVD)。
- 蓄电池 SOC 小于等于放电保护 SOC(DP)。

- 当 "BCCMode (策略选择)"设置为 "VOL(电压)"时, 判断条件为蓄电池电压值。
- 当 "BCCMode (策略选择)"设置为 "SOC" 时,判断条件为蓄电池的 SOC 值。 使用 SOC 模式前, 请先将 "BCCMode (策略选择)"设置为 "VOL(电压)", 在经 历完整的充放电循环后, SOC 模式控制才更准确。
- 有关 "BCCMode (策略选择)" 的设置,请参考章节 2.5.1 参数列表。

场景 C: PV 与市电正常输入

充电模式: "Solar(仅太阳能充电)" 放电模式: "PV>BP>BT" 或 "PV>BT>BP" 1 当 PV 的功率大于交流负载的功率时, PV 逆变给负载供电,同时给蓄电池充电。 ② 当 PV 的功率小于等于交流负载的功率 时, PV 和蓄电池同时逆变给负载供电。 (C-1) 市电 🔽 V_{BAT}≥ LVR $V_{BAT} \le LVD$ / SOC ≤ DP / SOC≥ DPR 3 满足如下任一条件, 市电给负载供电, PV 优先给蓄电池充电。 • 蓄电池电压小于等于低压断开电压(LVD)。 • 蓄电池 SOC 小于等于放电保护 SOC(DP). 备注: 当蓄电池电压大于等于低压断开恢复电压(LVR)或者蓄电池 SOC 大于等于放

电保护恢复 SOC(DPR)时,系统返回工作模式❷。

放电模式:"<u>PV >BP>BT</u>"或 "PV>BT>BP"

● 当 PV 的功率大于交流负载的功率 时, PV 逆变给负载供电,同时给蓄电池 充电。

② 当 PV 的功率小于等于交流负载的功率时, PV 和蓄电池同时逆变给负载供电。

V_{BAT} ≥ AUX OFF V_{BAT} ≤ AUX ON / SOC ≥ UAC OFF / SOC ≤ UAC ON

- 3 满足如下任一条件,市电给负载供电,同时市电和 PV 一起给蓄电池充电。
- 蓄电池电压小于等于**恢复辅助充电电** 压(AUX ON)。
- 蓄电池 SOC 小于等于市电辅助充电 开启 SOC(UAC ON)。

备注: 当蓄电池电压大于等于停止辅助充电电压(AUX OFF)或者蓄电池 SOC 大于等于市电辅助充电停止 SOC(UAC OFF)时,系统返回工作模式

。

②当 PV 的功率小于等于(允许充电电流 LBACC*蓄电池电压)时,市电给负载供 电, PV 给蓄电池充电。

V_{BAT}≥ AUX OFF V_{BAT}≤ AUX ON / SOC ≥ UAC OFF / SOC ≤ UAC ON

- ③ 满足如下任一条件,市电给负载供电,同时市电和 PV 一起给蓄电池充电。
- 蓄电池电压小于等于**恢复辅助充电电** 压(AUX ON)。
- 蓄电池 SOC 小于等于市电辅助充电开 启 SOC(UAC ON)。

备注: 当蓄电池电压大于等于停止辅助充电电压(AUX OFF)或者蓄电池 SOC 大于等于市电辅助充电停止 SOC(UAC OFF)时,系统返回工作模式❷。

(C-5) PV 充电模式: "Solar+Grid(太阳能加市电)"

放电模式: 不进行设置, 不影响

●当 PV 的功率大于(允许充电电流 LBACC*蓄电池电压)时,PV 和市电给 负载供电,同时 PV 给蓄电池充电。

●当 PV 的功率小于等于(允许充电电流 LBACC*蓄电池电压)时,市电给负载供电,同时市电和 PV 一起给蓄电池充电。

充电模式: "Grid > Solar(市电优先)"

放电模式: 不进行设置, 不影响

(C-6)

市电给负载供电,同时给蓄电池充电。

场景 D: 无 PV 输入, 市电正常输入

(D-2)

充电模式: "Solar(仅太阳能充电)"

• 蓄电池电压小于等于恢复辅助充电电

放电模式: "PV>BP>BT"或 "BP>PV>BT"

充电模式: "Solar > Grid(太阳能优先)" (D-4)V_{BAT}≥ AUX OFF 市电 🔽 / SOC ≥ UAC OFF

放电模式: "PV>BP>BT"或 BP>PV>BT"

- ①满足如下仟一条件,市电给负载供电。
- 蓄电池电压大于等于停止辅助充电电 压(AUX OFF)。
- 蓄电池 SOC 大于等于市电辅助充电停 止 SOC(UAC OFF)。

- 2满足如下任一条件时, 市电给负载供 电,同时给蓄电池充电。
- 蓄电池电压小于等于恢复辅助充电电 压(AUX ON)。
- 蓄电池 SOC 小于等于市电辅助充电开 启 SOC(UAC ON)。

6 保护功能

序号	保护功能	说明
1	PV 限流/限功率保护	电池板输入功率不能超过额定输入功率的2倍。
2	PV 短路保护	当PV不充电时,光伏阵列发生短路,不会损坏储能电源。
3	市电输入超压保护	当市电电压大于 "UOD (市电超压断开电压)"的设置值时,将停止市电充电和旁路。
4	市电输入欠压保护	当市电电压小于"ULVD(市电欠压断开电压)"的设置值时,将停止市电充电和旁路。
5	蓄 电 池 反 接 保 护 (仅 HP5542F-AH1050P30C 主机 具有此功能)	蓄电池极性反接时,储能电源不会损坏,修正接线错误后会继续工作。 誊示: 当有 PV 接入或市电接入时, 蓄电池反接, 会损坏储能电源。
6	蓄电池超压保护	当蓄电池电压大于"OVD(超压断开电压)"点,PV和市电将自动停止对蓄电池充电,避免蓄电池因过度 充电而损坏。
7	蓄电池过放保护	当蓄电池电压小于"LVD(低压断开电压)"点,蓄电池将自动停止放电,避免蓄电池因过度放电而损坏。
8	负载输出短路保护	当负载输出端发生短路故障时,会关闭输出,此后延时自动恢复输出(5 分钟内自动恢复输出不足 3 次将重新计数,每次间隔 5s、10s、15s,第 4 次保护后停止工作,复位后或者重新上电后开始工作)。 请及时处理故障,如因长期短路未处理可能会对设备造成永久损坏。 注:复位指的是参考章节"2.4.6 实时故障信息",点击 Clear 清除当前故障列表,恢复正常工作状态。
9	设备过热保护	当储能电源的内部温度过高时,储能电源将停止充放电; 待温度恢复正常时且保护时间大于 20 分钟后,储能电源将恢复充放电。

序号	保护功能	说明						
		5665W≤P<6600W	6600W≤P<7700W	P≥7700W				
10		运行 30s 保护	运行 10s 保护	立即保护				
	逆变过载保护(无市电)	注意:保护重启间隔时间依况	注意:保护重启间隔时间依次为 5s、10s、15s,第 4 次保护后锁死,复位后或者重新上电后开始工作。					
	HP5542F-AH1050P30C	6050W≤P<6985W	6985W≤P<8085W	P≥8085W				
11	市电旁路过载保护	运行 30s 保护 运行 10s 保护		立即保护				
	(无蓄电池模式)	注意:保护重启间隔时间依况	欠为 5s、10s、15s,第 4 次保护后锁	死,复位后或者重新上电后开始工作。				
	HP5542F-AH1050P30C	8550W≤P<9485W	9485W≤P<10585W	P≥10585W				
12	市电旁路过载保护	运行 30s 保护	运行 10s 保护	立即保护				
	(有蓄电池模式)	注意:保护重启间隔时间依次为 5s、10s、15s,第 4 次保护后锁死,复位后或者重新上电后开始工作。						

7 故障排除

若上电后表头一直处于开机画面, "RUN"指示灯红色闪烁且不进入主画面,则表头与主机通信异常。发生此故障时,需排除通信线是否 脱落, 否则请联系售后解决。

7.1 蓄电池故障

序号	故障/状态	编码	指示灯	蜂鸣器	解决方法
1	Battery Overvoltage (蓄电池过压)	Er04			断开充电,测量蓄电池电压是否过高。并检查连接的电池电压是否与储能电源的额定电压等级相符;或检查电池"OVD(超压断开电压)"的设置值是否与电池规格不一致。待蓄电池电压低于"OVR(超压断开恢复电压)"的设置值后,自动解除告警。
2	Battery Undervoltage (蓄电池欠压)	Er05			断开负载连线,测量蓄电池电压是否过低。待蓄电池充电恢复到"LVR(低压断开恢复电压)"以上自动恢复正常,或使用其他方式补充电能。
3	Battery Over Temperature (蓄电池过温)	Er11			请确保蓄电池安装在阴凉及通风良好的地方,检查蓄电池实际充放电电流 未超过蓄电池 "LBACC(本地蓄电池允许充电电流)"和 "LBADC(本地蓄 电池允许放电电流)"的设置值。待蓄电池冷却到 "BATT OTPR(蓄电池温 度上限恢复温度)"以下时,恢复正常充、放电控制。
4	Battery Overcurrent (蓄电池过流)	Er37			检查蓄电池实际充放电电流是否超过蓄电池 "LBACC(本地蓄电池允许充电电流)"和 "LBADC(本地蓄电池允许放电电流)"的设置值。
5	Battery Cable Disconnected (电池掉线)	Er39			检查蓄电池连接是否正常,检查 BMS 是否保护。

序号	故障/状态	编码	指示灯	蜂鸣器	解决方法
	Battery				
	Undervoltage	E-50			
6	Alarm	arm Er50			检查连接的电池电压是否低于 "UVW (欠压报警电压)"。
	(电池欠压告警)				
	Battery				
_	Connection	Er56			N + * + \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
/	Failed				检查蓄电池连接是否正常,锂电池的 BMS 通信连接是否正常。
	(电池激活失败)				

7.2 PV 故障

序号	故障/状态	编码	指示灯	蜂鸣器	解决方法
	PV Module 1				
1	Over	Er13			
'	Temperature (PV	LITS			
	模块 1 路过温)		PV 指示灯		津珠伊健然中海空壮大阳岩及通风户权的地方
	PV Module 2		绿色常亮		请确保储能电源安装在阴凉及通风良好的地方。
2	Over	Er14			
2	Temperature (PV	Er 14			
	模块 2 路过温)				
3	PV1 Overvoltage	Er15	PV 指示灯	行 型/ 4以 荷x	检查连接的PV开路电压是否过高(大于500V)。待PV开路电压低于490V
3	(PV1 输入过压)	EI 13	红色常亮	间歇报警	后报警解除。
	PV1 Overcurrent	F-47	PV 指示灯		先关闭储能电源,等待5分钟后再打开储能电源,检查是否正常。若仍然
4	(PV1 输入过流)	Er17	绿色常亮		异常,请联系技术支持。
-	PV2 Overvoltage	F-40	PV 指示灯	5-1 III L. 117 #6	检查连接的PV开路电压是否过高(大于500V)。待PV开路电压低于490V
5	(PV2 输入过压)	Er18	红色常亮	间歇报警	后报警解除。

序号	故障/状态	编码	指示灯	蜂鸣器	解决方法
6	PV2 Overcurrent	Er20			
	(PV2 输入过流)	2.20			
	PV Module				先关闭储能电源,等待5分钟后再打开储能电源,检查是否正常。若仍然
7	Hardware Fault	Er30			异常,请联系技术支持。
'	(PV 模块硬件故	LISO			
	障)				
	PV1 Temp				
	Sensor				
8	Disconnected	Er43			
	(PV1 温度传感				
	器未接)		PV 指示灯		
	PV2 Temp		绿色常亮		
	Sensor				
9	Disconnected	Er44			先关闭储能电源,等待5分钟后再打开储能电源,检查是否正常。若仍然
	(PV2 温度传感				异常,请联系技术支持。
	器未接)				
	PV1 Pre-Charge				
10	Timeout	Er52			
	(PV1 预充超时)				
	PV2 Pre-Charge				
11	Timeout	Er53			
	(PV2 预充超时)				

7.3 逆变器故障

序号	故障/状态	编码	指示灯	蜂鸣器	解决方法
1	Inverter Output Overcurrent (逆变输出过流)	Er02	LOAD 指示 灯红色常亮	间歇报警	检查负载总功率是否超过储能电源的"逆变额定功率(见章节 <u>9技术参数</u>)",完全断开负载并关闭储能电源,等待5分钟后再打开储能电源,检查是否正常。若仍然异常,请联系技术支持。
2	Inverter Output Overvoltage (逆变输出过压)	Er07	LOAD 指示 灯红色常亮	间歇报警	检查逆变输出是否高于 "Over Voltage Protection" (见章节 <u>2.4.4 负载 实时参数</u> ,点击 <i>Fun</i> 进入 "Setting Parameters To Display (负载设定参 数页)" 查看此参数值),完全断开负载并关闭储能电源,等待 5 分钟后再打开储能电源,检查是否正常。若仍然异常,请联系技术支持。
3	Inverter Over Temperature (逆变过温)	Er10			请确保储能电源安装在阴凉及通风良好的地方。
4	Inverter Hardware Overvoltage (逆变硬件过压)	Er22			
5	Inverter Hardware Overcurrent (逆变硬件过流)	Er23			
6	Inverter Voltage OFFSET Error (逆变电压偏置异 常)	Er32			完全断开负载并关闭储能电源,等待 5 分钟后再打开储能电源,检查是否正常。若仍然异常,请联系技术支持。
7	Inverter Current OFFSET Error (逆变电流偏置异 常)	Er35			

序号	故障/状态	编码	指示灯	蜂鸣器	解决方法
8	Inverter Temp Sensor Disconnected (逆变温度传感器 未接)	Er45	LOAD 指示 灯绿色常亮		关闭储能电源,等待5分钟后再打开储能电源,检查是否正常。若仍然异常,请联系技术支持。
9	Inverter Output Undervoltage (逆变欠压)	Er49	LOAD 指示 灯红色常亮	间歇报警	检查负载总功率是否超过储能电源的"逆变额定功率(见章节 <u>9技术参数</u>)",完全断开负载并关闭储能电源,等待5分钟后再打开储能电源,检查是否正常。若仍然异常,请联系技术支持。

7.4 市电故障

序号	故障/状态	编码	指示灯	蜂鸣器	解决方法
1	Utility Overvoltage (市电过压)	Er08	GRID 指示 灯红色常亮	间歇报警	检查市电电压是否超过 UOD (市电超压断开电压), 断开市电输入并关 闭储能电源,等待5分钟后打开储能电源,检查是否正常。若仍然异常, 请联系技术支持。
2	Utility Overcurrent (市电过流)	Er09	GRID 指示 灯红色常亮	间歇报警	检查负载总功率是否超过储能电源的"逆变额定功率(见章节 <u>9技术参数</u>)",完全断开负载并关闭储能电源,等待5分钟后再打开储能电源,检查是否正常。若仍然异常,请联系技术支持。
3	Utility Undervoltage (市电欠压)	Er25	GRID 指示 灯红色常亮		检查市电电压是否低于"ULVD(市电欠压断开电压),断开市电输入并 关闭储能电源,等待5分钟后打开储能电源,检查是否正常。若仍然异常, 请联系技术支持。
4	Utility Pre-charge Timeout (市电预充超时)	Er28	GRID 指示 灯绿色常亮		检查市电频率是否在 "UFD (市电欠频率断开频率)"~"UOF (市电超频率断开频率)"范围之内,断开市电输入并关闭储能电源,等待 5 分钟后打开储能电源,检查是否正常。若仍然异常,请联系技术支持。

序号	故障/状态	编码	指示灯	蜂鸣器	解决方法
5	Utility Relay Adhesion (市电继电器黏 连)	Er29	GRID 指示 灯绿色常亮		检查市电频率是否在 "UFD (市电欠频率断开频率)"~"UOF (市电超频率断开频率)"范围之内,断开市电输入并关闭储能电源,等待 5 分钟后打
6	Utility Frequency Error (市电频率异常)	Er31	GRID 指示 灯红色常亮	间歇报警	开储能电源,检查是否正常。若仍然异常,请联系技术支持。

7.5 负载故障

序号	故障/状态	编码	指示灯	蜂鸣器	解决方法
1	Load Current OFFSET Error (负载电流偏置 异常)	Er33			
2	Load Over Load (负载过载)	Er48			完全断开负载并关闭储能电源,等待 5 分钟后再打开储能电源,检查是 否正常。若仍然异常,请联系技术支持。
3	Overload Lockdown (负载过载锁死)	Er55	LOAD 指示 灯红色常亮	间歇报警	

7.6 其他单机故障

序号	故障/状态	编码	指示灯	蜂鸣器	解决方法
1	DC Bus Overvoltage (直流母线过压)	Er00			请断开储能电源上的所有连接线,等待5分钟后,只连接蓄电池再打开储
2	DC Bus Undervoltage (直流母线欠压)	Er06			能电源,检查是否正常。若仍然异常,请联系技术支持。
3	Ambient Over Temperature (机内过温)	Er12			请确保储能电源安装在阴凉及通风良好的地方。
4	Battery or Bus Hardware Overvoltage (电池或母线硬件过压)	Er21			
5	High Volt Bus Hardware Overcurrent (高压母线硬件 过流)	Er24			请断开储能电源上的所有连接线,等待 5 分钟后,只连接蓄电池再打开储能电源,检查是否正常。若仍然异常,请联系技术支持。
6	High Volt Bus Current Abnormal (高压母线电流 偏置异常)	Er36			

序号	故障/状态	编码	指示灯	蜂鸣器	解决方法
7	Boost Drive Error (升压驱动异常)	Er38			
8	Auxiliary Power Supply Abnormal (辅助供电异常)	Er40			请断开储能电源上的所有连接线,等待5分钟后,只连接蓄电池再打开储
9	Environment Temp Sensor Disconnected (环境温度传感 器未接)	Er42			能电源,检查是否正常。若仍然异常,请联系技术支持。
10	Low Temperature Charging Limit (低温禁止充电)	Er46			
11	Low Temperature Discharging Limit (低温禁止放电)	Er47			检查环境温度是否低于设置的 "LTSChrg(低温禁止充电温度)"及 "LTSDischrg(低温禁止放电温度)"。
12	EEprom Abnormal (EEPROM 异 常)	Er54			请断开储能电源上的所有连接线,等待 5 分钟后,只连接蓄电池再打开储 能电源,检查是否正常。若仍然异常,请联系技术支持。

7.7 BMS 通信故障

序号	故障/状态	编码	指示灯	蜂鸣器	解决方法
1	BMS Overvoltage	Er66			
	(BMS 过压)				
	BMS Charging				
2	Temp Abnormal	Er68			
	(BMS充电温度异	L100			
	常)				
	BMS				
3	Undervoltage	Er69			
	(BMS 欠压)				需要查看 BMS 的通信状态或者设置参数。
	BMS Discharging				
4	Temp Abnormal	Er71			
4	(BMS 放电温度异	<u> </u>			
	常)				
	BMS				
5	Communication	Er74			
3	Failure	E1/4			
	(BMS 通信故障)				

8 系统维护

为了保持长久的工作性能,建议每年进行两次以下项目的检查。

- 确认储能电源周围的气流不会被阻挡住,清除风扇上的污垢或碎屑。
- 检查暴露的导线是不是因日晒、与周围其他物体摩擦、干朽、昆虫或鼠类破坏等导致绝缘受到损坏, 视实际情况进行维修或更换导线。
- 验证指示灯指示及显示屏显示与设备实际运行情况是否一致,请注意不一致或错误的情况需采取纠正措施。
- 检查接线端子是否有腐蚀、绝缘损坏、高温或燃烧/变色迹象,拧紧端子螺丝。
- 检查是否有污垢、昆虫筑巢和腐蚀现象,按要求清理。
- 本设备未配有避雷器,若配有避雷器且已失效,及时换掉失效的避雷器,避免造成储能电源甚至用户 其他设备的雷击损坏。

电击危险! 进行上述操作时确认储能电源电源已断开,且等待10分钟后待电容里的电量已放掉,再进行相应检查或操作!

9 技术参数

产品型号		ROH5542F-05X1P30C	ROH5542F-10X2P30C			
市	市电电压	176VAC~264VAC(默认),	可设置 90VAC~280VAC			
电	市电频率	45Hz~	·65Hz			
输	最大市电充电电流	100A				
入 切换响应时间 逆变切换到市电:		疗电: 10ms				
Ĺ,	971X-497-7711b1	负载大于 100W 时,市	电切换到逆变: 20ms			
	逆变额定功率(@35℃)	5500W				
	3 秒瞬时浪涌输出功率	8500W				
逆	逆变输出电压等级	220/230\				
变	逆变输出频率等级	50/60Hz				
输	输出电压波形	纯正:				
<u>H</u>	负载功率因数	0.2~1 (VA 数小于等				
	输出电压谐波失真率	≤3% (48V ∮				
	满载效率	92				
	最大逆变效率	94	**			
光	PV 最大开路电压	500V(最低 440V(25℃				
伏控	MPPT 电压范围	85~40	0VDC			
制	MPPT 数量	2 路				
器	PV 最大输入电流	双路,2×15A				
нн	PV 最大输入功率	2×3000W				
	PV 最大充电电流	100A				
	MPPT 最大效率	≥99	.5%			
	电池类型	磷酸	铁锂			
	电池模组	5.12KWH,5	1.2V/100AH			
电	模组数量	1	2			
池	电池额定电压	51.2VDC				
	电池容量	5.12KWH	10.24KWH			
	电池工作温度范围	充电: 0℃~+50℃,	放电: -20℃~+50℃			
+	空载损耗	<1.0 A (测试条件: 市电、PV 和负载均不连接,交流输出开启,48V 输入电压,风扇不转)				
他	待机电流	<0.8A (测试条件: 市电、PV 和负载均不连接,交流输出关闭,48V 输入电压,风扇不转)				
	安装方式	平置堆叠				
环境	工作环境温度	-20°C~+50°C (>	30℃降额运行)			
参	存储环境温度	-25℃~	+60°C			

数	防护等级	IP30		
	相对湿度	< 95% (不结露)		
	海拔高度	<4000m (海拔超过 2000 米, 需降额使用)。		
机	外形尺寸(长 x 宽 x 高)	530mm x 500mm x 556mm	530mm x 500mm x 718mm	
械参	主机净重	37.8Kg	37.8Kg	
数	整机净重	95.3Kg(移动支架)	143.1Kg(移动支架)	
~	室75.77里	87.9Kg (固定支架)	135.7Kg(固定支架)	

产品型号		ROH5542F-15X3P30C	ROH5542F-20X4P30C			
市	市电电压	176VAC~264VAC(默认),	可设置 90VAC~280VAC			
电电	市电频率	45Hz~	-65Hz			
输	最大市电充电电流	100A				
入	切换响应时间	逆变切换到ī	 市电: 10ms			
	M1X44/7711 [14]	负载大于 100W 时,市	f电切换到逆变: 20ms			
	逆变额定功率(@35℃)	550	0W			
	3 秒瞬时浪涌输出功率	850	0W			
逆	逆变输出电压等级	220/230\	/AC±3%			
变	逆变输出频率等级	50/60Hz	z±0.2%			
输	输出电压波形	纯正	弦波			
出出	负载功率因数	0.2~1(VA 数小于等	等于持续输出功率)			
"	输出电压谐波失真率	≤3% (48V 纯阻性负载)				
	满载效率	92%				
	最大逆变效率	94	%			
光	PV 最大开路电压	500V(最低环境温度)				
伏		440V(25℃环境温度)				
控	MPPT 电压范围	85~40	0VDC			
制	MPPT 数量	2	2 路			
器	PV 最大输入电流	双路,2×15A				
	PV 最大输入功率	2×3000W				
	PV 最大充电电流	100A				
	MPPT 最大效率	≥99	1.5%			
	电池类型	磷酸	铁锂			
	电池模组	5.12KWH, 5	51.2V/100AH			
电	模组数量	3	4			
池	电池额定电压	51.2	VDC			
	电池容量	15.36KWH	20.48KWH			
	电池工作温度范围	充电: 0℃~+50℃,放电: -20℃~+50℃				
其 他	空载损耗	<1.0 A (测试条件: 市电、PV 和负载均不连接,交流输出开启,48V 输 入电压,风扇不转)				

	待机电流	<0.8A (测试条件:市电、PV 和负载均不连接,交流输出关闭,48V 入电压,风扇不转)	
	安装方式	平置	堆叠
环	工作环境温度	-20°C~+50°C(>	30℃降额运行)
境	存储环境温度	-25℃~+60℃ IP30 < 95%(不结露) <4000m (海拔超过 2000 米,需降额使用)。	
参	防护等级		
数	相对湿度		
	海拔高度		
机械	外形尺寸(长 x 宽 x 高)	530mm x 500mm x 880mm	530mm x 500mm x 1042mm
参数	主机净重	37.8Kg	37.8Kg
	整机净重	190.9Kg(移动支架) 183.5Kg(固定支架)	238.7Kg(移动支架) 231.3Kg(固定支架)

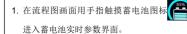
产品型号		ROH5542F-25X5P30C	ROH5542F-30X6P30C	
.	市电电压	176VAC~264VAC(默认),	可设置 90VAC~280VAC	
市电	市电频率	45Hz~65Hz		
输	最大市电充电电流	100)A	
入	切换响应时间	逆变切换到市	f电: 10ms	
	切换响应时间	负载大于 100W 时,市	电切换到逆变: 20ms	
	逆变额定功率(@35℃)	5500	OW	
	3 秒瞬时浪涌输出功率	8500	OW	
逆	逆变输出电压等级	220/230\	/AC±3%	
变	逆变输出频率等级	50/60Hz	z±0.2%	
输	输出电压波形	纯正:	弦波	
出出	负载功率因数	0.2~1(VA 数小于等于持续输出功率)		
"	输出电压谐波失真率	≤3% (48V 纯阻性负载)		
	满载效率	92%		
	最大逆变效率	94'	%	
光	PV 最大开路电压	500V (最低	环境温度)	
伏	1 V 取八川町屯瓜	440V (25°C	环境温度)	
控	MPPT 电压范围	85~400	OVDC	
制	MPPT 数量	2 년	各	
器	PV 最大输入电流	双路,2	2×15A	
	PV 最大输入功率	2×3000W		
	PV 最大充电电流	100)A	
	MPPT 最大效率	≥99	.5%	
电	电池类型	磷酸		
池	电池模组	5.12KWH,5	1.2V/100AH	

	模组数量	5	6	
	电池额定电压	51.2VDC		
	电池容量	25.6KWH	30.72KWH	
	电池工作温度范围	充电: 0℃~+50℃,	放电: -20℃~+50℃	
其	空载损耗	<1.0 A (测试条件:市电、PV和负载均不连接,交流输出开启,48V输入电压,风扇不转)		
他	待机电流	<0.8A (测试条件:市电、PV 和负载均不连接,交流输出关闭,48V 输入电压,风扇不转)		
	安装方式	平置堆叠		
环	工作环境温度	-20℃~+50℃(>30℃降额运行) -25℃~+60℃ IP30		
境	存储环境温度			
参	防护等级			
数	相对湿度	< 95% (2	不结露)	
	海拔高度	<4000m (海拔超过 2000 米, 需降额使用)。		
机械	外形尺寸 (长 x 宽 x 高)	530mm x 500mm x 1205mm	530mm x 500mm x 1367mm	
参数	主机净重	37.8Kg	37.8Kg	
ж	整机净重	286.5Kg(移动支架) 279.1Kg(固定支架)	334.3Kg(移动支架) 326.9Kg(固定支架)	

10 附录

10.1 附录一 缩略语索引表

LCD 界面	缩略语	英文全称	中文说明
	OVP	Over Voltage Protection Voltage	PV 超压保护点
	OVPR	Over Voltage Protection Reconnect Voltage	PV 超压恢复点
0.10.44	UVP	Under Voltage Protection Voltage	PV 欠压保护点
Solar Setting Parameter (光伏参数设置)	UVPR	Under Voltage Protection Reconnect Voltage	PV 欠压恢复点
(元狄多敦权重)	ОТР	Over Temperature Protection Temperature	PV 温度上限
	OTPR	Over Temperature Protection Reconnect Temperature	PV 温度上限恢复
	OVD	Over Voltage Disconnect Voltage	超压断开电压
	CLV	Charging Limit Voltage	充电限制电压
	OVR	Over Voltage Reconnect Voltage	超压断开恢复电压
	ECV	Equalize Charging Voltage	均衡电压
	BCV	Boost Charging Voltage	提升电压
	FCV	Float Charging Voltage	浮充电压
Voltage Control	BVR	Boost Voltage Reconnect Voltage	提升恢复电压
Strategy	LVR	Low Voltage Reconnect Voltage	低压断开恢复电压
(电压控制策略)	UVWR	Under Voltage Warning Reconnect Voltage	欠压报警恢复电压
	UVW	Under Voltage Warning Voltage	欠压报警电压
	LVD	Low Voltage Disconnect Voltage	低压断开电压
	DLV	Discharging Limit Voltage	放电限制电压
	AUX OFF	Auxiliary module OFF voltage	停止辅助充电电压
	AUX ON	Auxiliary module ON voltage	恢复辅助充电电压
	FCP	Full Charging Protection SOC	充满保护 SOC
SOC Control Strategy	FCPR	Full Charging Protection Reconnect SOC	充满保护恢复 SOC
(SOC 控制策略)			低电量告警恢复 SOC
	LPA	Low Power Alarm SOC	低电量告警 SOC


DPR		Discharging Protection Reconnect SOC	放电保护恢复 SOC
	DP Discharging Protection SOC		放电保护 SOC
UAC ON Utility Charging ON SOC UAC OFF Utility Charging OFF SOC		市电辅助充电开启 SOC	
		市电辅助充电停止 SOC	
	Set SOC	Set SOC	SOC 设置值
	UOD	Utility Over Voltage Disconnect Voltage	市电超压断开电压
Oct 1 Oct 1	UOR	Utility Over Voltage Reconnect Voltage	市电超压恢复电压
Grid Setting Parameter (市电	ULVD	Utility Low Voltage Disconnect Voltage	市电欠压断开电压
参数设置)	ULVR	Utility Low Voltage Reconnect Voltage	市电欠压恢复电压
多双纹重/	UOF	Utility Over Frequency Disconnect Frequency	市电超频率断开频率
	UFD	Utility Under Frequency Disconnect Frequency	市电欠频率断开频率
	INVOVL	Inverter Output Voltage Level	逆变输出电压等级
	INVOFR	Inverter Output Frequency Range	逆变输出频率等级
	Load CL	Load Current Limit	输出负载限流值
Load Setting Parameter (负载	INVOP	Inverter Over Voltage Protection Voltage	逆变高压保护点
参数设置)	INVOPR	Inverter Over Voltage Protection Recovery Voltage	逆变高压恢复点
	TempUL	Temperature Upper Limit	温度上限
	TempULR	Temperature Upper Limit Recovery	温度上限恢复
	Status	Battery Status	电池状态
	BDCap	Battery Design Capacity	蓄电池总的容量
	ВТуре	Battery Type	电池类型
	BRV	Battery Voltage	电池电压等级
Battery Basic Properties	LBACC	Local Battery Available Charging Current	本地蓄电池允许充电电 流
(蓄电池基本参数 设置)	LBADC	Local Battery Available Discharging Current	本地蓄电池允许放电电 流
	BECT	Battery Equalize Charging Time	蓄电池均衡充电时间
	BECD	Battery Equalize Charging Date	均衡日期
	BBCT	Battery Boost Charging Time	蓄电池提升充电时间

1			
	втсс	Battery Temperature Compensation Coefficient	蓄电池温度补偿系数
	Li PROT	Lithium Battery Protection	锂电池保护使能
	LTSChrg	Low Temperature Stop Charging Temperature	低温禁止充电温度
	LTSDischrg	Low Temperature Stop Discharging Temperature	低温禁止放电温度
Advanced	BATT OTP	Battery Over Temperature Protection	蓄电池温度上限
Battery Properties	BATT OTPR	Battery Over Temperature Protection Recovery	蓄电池温度上限恢复温 度
(蓄电池高级参数	Chrg	Charging	电池充电使能
设置)	Dischrq	Discharging	电池放电使能
	PCUP	Phase Current Unbalance Protection	三相电流不平衡保护使 能
	INVPSet	Inverter Phase Setting	逆变器相位设置
	UCD	Unbalanced Current Difference	不平衡电流差值
	BACC	Battery Available Charging Current	蓄电池允许充电电流
	BADC	Battery Available Discharging Current	蓄电池允许放电电流
	UACC	Utility Available Charging Current	市电允许充电电流
	CMode	Charging Mode	充电模式
	DMode	Discharge Mode	放电模式
Charge and	ACmode	AC Input Mode	AC 模式
Discharge	PVMode	PV Mode	PV 模式
Management	BCCMode	Battery Charging Control Mode	策略选择
(充放电管理)	BMSProt	BMS Protocol	BMS 协议号
	BMS	BMS Enable	BMS 使能
	BMSVolt	BMS Voltage Control	BMS 电压控制
	BMSCurr	BMS Current Control	BMS 电流控制
	BMSFail	BMS Fail Action	BMS 失效动作
	BCM	Battery Connection Method	电池接入方式
	LCD BRT	LCD Brightness	人机交互时 LCD 亮度值
	TODelay	Idle Timeout Delay	无操作退出延时时间
Local Parameters	LCDSBRT	Standby LCD Brightness	待机时屏幕的亮度值
(本机参数设置)	SOT	Screen OFF Time	待机时进入熄屏的延时
Com ID Communication ID		通信 ID 号	

	DCT ON Dry Contact ON Voltage		干接点打开电压
	DCT OFF	Dry Contact OFF Voltage	干接点关闭电压
	Switch BMS	Switch BMS	允许 BMS 控制充电
	HRI	History Record Interval	历史记录间隔时间
	Wireless	Wireless	内置通信模块使能
	RTU Power	RTU Power	COM 接口 5V 电源使能
	Screen TO	Screen Timeout	自动熄屏
	Parameter Reset	Parameter Reset	参数复位
	Low Power Mode	Low Power Mode	低功耗模式
Others (其他参数设置)	Manual Equalizer	Manual Equalizer	手动均衡
	DC Source Characteristic	DC Source Characteristic	直流源特性
	Initializing Records	Initializing Records	清除故障
	Clear Statistical Power	Clear Statistical Power	累计电量清零

10.2 附录二 BMS 状态数据对照表

2. 蓄电池实时参数界面,用手指触摸蓄电池电量 图标 进入蓄电池状态图标。

3. 第一页显示 "Battery State (蓄电池状态)"。

4. 点击 *Down* 按钮,显示第二页 "Cell State (电 池电芯状态)"。

Pack Current State

- 5. 点击 *Down* 按钮,显示第三页 "Cell State And Other (电池电芯状态和电池其他数据)"。
- 6. 点击 **Down** 按钮,显示第四页 "Other (电池 其他数据)"。

6

Undervoltage alarm

各界面详细数据说明如下:

LCD 界面	英文显示	中文释义	说明
	Charging protection	充电保护	绿色表示未发生此状态,红色表示发生了此 状态。显示红色后,设备关闭充电。
	Discharge protection	放电保护	绿色表示未发生此状态,红色表示发生了此 状态。显示红色后,设备关闭放电。
	Communication Error	BMS 通信故障	BMS-Link 和锂电池 BMS 通信故障或通信未建立(如协议选择错误、通信线缆不匹配等)。 绿色表示未发生此状态,红色表示发生了此状态。显示红色后,设备关闭充放电。
Battery State	Other protection	其他保护	绿色表示未发生此状态,红色表示发生了此 状态。显示红色后,设备关闭充放电。
(蓄电池 状态)	Charge overtemperature	充电过温	绿色表示未发生此状态,红色表示发生了此 状态。显示红色后,设备关闭充电。
	Discharge overtemperature	放电过温	绿色表示未发生此状态,红色表示发生了此 状态。显示红色后,设备关闭放电。
	Full of requests	充满请求标志位	绿色表示未发生此状态,红色表示发生了此
	Forced charge	强制充电标志位	状态。
	Discharge Enable	放电使能	绿色表示使能,红色表示不使能。显示红色 后,设备关闭放电。
	Charge Enable	充电使能	绿色表示使能,红色表示不使能。显示红色 后,设备关闭充电。
Cell			如果检测到当前单体电芯正常或者当前无电
State	1 Normal~14		芯时显示绿色;当前单体电芯异常时显示变
(単体电	Normal	*****	红。单体电芯异常状态包括: Undervoltage
芯状态)		单体电芯 1 状态	alarm (欠压告警)、Overvoltage alarm (过
		~单体电芯 16 状	压告警)、Undervoltage proterct (欠压保护)、Overvoltage protect (过压保护)、Cell
Cell	15 Normal~16	态。	detection(电芯检测)。
State	Normal		设备读取到 BMS 单体电芯的欠压告警或保
And	Homai		护后关闭设备放电;设备读取到 BMS 单体
Other (单			电芯的过压告警或保护后关闭设备充电。
体电芯状	MOS Temperature	MOS 管温度状	正常显示绿色,异常显示红色,异常状态包
态和电池	State	态	括:High temperature alarm(高温告警)、
其他数 据)	Environment Temper State	环境温度状态	Low temperature alarm (低温告警)、High temperature protect (高温保护)、Low
₩ /	Equalization Temper State	均衡温度状态	temperature protect(低温保护)、NTC fault(温度传感器故障)。

	Cell Temperature State	电芯温度状态	设备关闭充放电动作。
Other(电 池其他数 据)	Pack Voltage State Undervoltage alarm	电池包电压状态	正常显示绿色,异常显示红色,异常状态包括:Undervoltage alarm(欠压告警)、Overvoltage alarm(过压告警)、Undervoltage protect(欠压保护)、Overvoltage protect(过压保护)。 设备读取到 BMS 欠压告警或保护后关闭设备放电:设备读取到 BMS 过压告警或保护后关闭设备充电。
	Pack Current State Overcharge alarm	电池包电流状态	正常显示绿色,异常显示红色,异常状态包括:Overrelease alarm (过放告警)、Overcharge alarm (过充告警)、Overdischarge protection (过放保护)、Overcharge protection (过充保护)。 设备读取到 BMS 过放告警或保护后关闭设备放电;设备读取到 BMS 过充告警或保护后关闭设备充电。

如有变更,恕不另行通知。版本号: V1.0

惠州汇能精电科技有限公司

北京服务热线: 010-82894896/82894112

惠州服务热线: 0752-3889706

深圳服务热线: 0755-89236770

邮箱: sales@epever.com

网址: www.epever.com.cn