

太阳能市电充电逆变一体机

用户手册

UP1000/UP1500 UP2000/UP3000 UP5000

目 录

里	要的安全说明	1
免	责声明	2
1.	基本资料	3
	1.1 产品概述	3
	1.2 产品特征	Ę
	1.3 产品命名规则	6
	1.4 连接示意图	7
2.	安装说明	8
	2.1 安装注意事项	8
	2.2 接线规格和断路器选型	8
	2.3 安装及接线	10
3.	界面介绍	14
	3.1 指示灯	14
	3.2 按键	15
	3.3 实时监控界面	15
	3.4 设置界面	18
	3.5 其他功能	21
4.	保护功能	23
5.	故障排除	24
	5.1 故障指示	24
	5.2 故障排除	24
6.	系统维护	25
7.	技术参数	26

重要的安全说明

请保留本手册以备日后查用。

本手册中包含了 UPower 系列太阳能市电充电逆变一体机(下文简称为"一体机")的安全、安装以及操作说明。

- ▶ 安装使用之前请仔细阅读手册中的说明和注意事项。
- 一体机内部有非安全电压,为避免人身伤害,用户不要自行拆卸,如需维修应联系本公司专业维修人员。
- ▶ 请勿将一体机放置儿童可触碰的地方。
- ▶ 该一体机仅限室内使用。严禁将一体机安装在潮湿、盐雾、腐蚀、油腻、易燃易爆或粉尘大量聚集等恶劣环境中。
- ▶ 市电输入和交流输出为高压电,请勿触摸接线处。
- ▶ 一体机工作时,外壳温度会很高,请勿触摸。
- ▶ 一体机工作时,请不要打开端子保护盖。
- ▶ 建议在一体机外部安装合适的保险或断路器。
- 在安装和调整一体机的接线前断开光伏阵列、市电和蓄电池端子附近的保险或断路器。
- ➤ 安装之后检查线路连接是否紧实,避免由于虚接而造成热量聚集发生危险。
- ▶ 一体机为离网型,严禁进行并网,并网会损坏。
- 只允许单台一体机单独工作,严禁进行多台输出并联或串联,输出并联或串联会对一体机造成损坏。
- ➤ 交流输出接口只连接负载,严禁连接其他电源或市电,否则会对一体机造成损坏;若连接负载时,一体机需要停止工作。
- ➤ 交流输出接口严禁连接变压器或冲击功率(VA)超过过载功率的负载,否则会对一体机造成损坏。

符号说明:为了保障用户使用本产品的同时保障人身财产安全,手册中提供了相关信息,并用以下符号突出强调。在手册中遇到以下符号请认真仔细阅读相关文字。

小提示:表示可参考的建议

注意: 表示在操作过程中的重要提示,未执行可能导致设备故障报警。

警示: 表示具有潜在的危险,如果未能避免可能会导致设备损坏。

警告: 表示具有电击的危险,如果未能避免将会导致设备损坏或人员的触电/伤亡。

高温警告: 表示具有因高温造成的危险, 如果未能避免可能造成人员的烫伤。

 \prod i

在对设备进行操作前,请阅读说明书。

免责声明

以下情况下造成的损坏,本公司不承担任何责任:

- ▶ 使用不当或使用在不符合工作环境的场所造成的损坏(如潮湿、盐雾、腐蚀、油腻、易燃易爆或粉尘大量聚集等恶劣环境)。
- > 实际工作中的电流、电压、功率超过一体机的限定值。
- ➤ 环境温度超过限制工作温度范围造成的损坏。
- ▶ 未遵循一体机标识或手册说明引起的电弧,火灾,爆炸等事故
- ▶ 擅自拆开和维修一体机。
- ➤ 不可抗力造成的损坏。
- ➤ 运输或装卸一体机时发生的损坏。

1. 基本资料

1.1 产品概述

UPower 系列是集市电与太阳能充电、交流输出于一体的新型储能一体机,采用多核处理器 架构设计以及控制算法。产品集成了太阳能 MPPT 充电单元、AC-DC 市电充电单元、DC-AC 逆 变单元以及显示管理单元,具有高响应速度、高转换效率、高稳定性及工业级设计的特点。

UPower 系列产品的太阳能 MPPT 充电单元采用 MPPT 跟踪技术,在多种环境下均能追踪到光伏阵列的最大功率点且具有很高的跟踪效率和转换效率; AC-DC 充电单元采用全数字化电压电流双闭环控制,具有很高的响应速度和稳定性; DC-AC 逆变单元采用全数字化设计和输入、输出隔离型逆变技术,具有很高的稳定性和抗冲击性能,适用于逆变功率范围之内的家用电器、电动工具、工业设备、电子影音等交流负载。显示管理单元是其他单元集中管理的关键部件,采用4.2 英寸段式液晶屏显示设计,具有完整的运行数据、状态的显示以及全参数的设置界面。

UPower 具有市电、太阳能的多种供电模式,用户可根据需求灵活选择能源的应用形式,维持供电保障率的同时,利用清洁能源。适用于电网电力匮乏、稳定性差的地区,以及柴、汽油发电机替代电网供电具具有太阳能资源的场合。

特点:

- 多能源管理的全数字化新型储能一体机
- 太阳能输入采用 MPPT 跟踪技术,最大追踪效率 99.5%,最大转换效率 98.5%
- AC-DC 采用全数字化控制,实现宽输入、高稳定的市电充电
- 采用数字化 SPWM 逆变技术,最大效率达 95%,满载逆变效率达 93%
- 电压、电流及功率的多环回馈控制
- 具有良好的动态响应能力,高抗负载浪涌能力,高运行稳定性
- 具有市电及太阳能充电比例选择、总充电电流的设置功能
- 可洗4种充电模式和2种输出供电方式可洗[®]
- 市电充电的同时可逆变输出,避免了市电电压不稳定对负载的影响
- 交流输出一键控制,可一键开关市电或逆变输出
- 支持冷启动、软启动

- 丰富的用户设置界面
- 具有 RS485 隔离通讯接口,自带 5VDC/200mA 的输出,可接入 eBox-WIFI 模块等通讯设备
- 标准 Modbus 通讯协议,便于用户远程监控、管理,适应多种远程应用需求
- 具有蜂鸣器报警功能, 且蜂鸣器可设置开启或关闭
- 具有 PV 反接保护, 充电限流限功率保护, 短路保护, 防反保护
- 具有市电输入及交流输出的过压、欠压保护,限功率保护,过流及短路保护
- 具有蓄电池欠压及过压保护,温度补偿功能等
- 具有整机内部过温保护,风扇的自动启停功能
- 具有多种选配件,可根据用户需求选择
- ① UP1500 及以上型号,环境温度 25℃、额定输入电压、纯电阻负载条件下测试所得,满载是指持续功率。
- ② 4 种充电模式为: 市电优先、太阳能优先、市电&太阳能和仅太阳能; 2 种输出供电方式为: 蓄电池供电、市电供电

1.2 产品特征

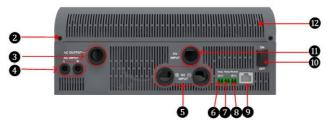
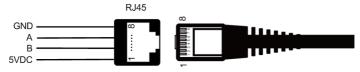


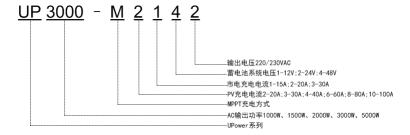
图 1 产品外观

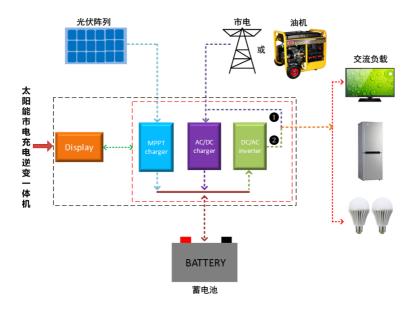
0	散热孔	0	干接点接口
2	M4 螺丝(2 个)	8	Remote 接口
8	AC 输出接线端子	9	RS485 通信接口(5VDC/200mA)
4	市电输入接线端子	0	设备开关
6	蓄电池输入接线端子	0	PV 输入接线端子
6	远程温度传感器*接口	Ø	端子保护盖


标配件:外接温度传感器

(型号: RT-MF58R47K3.81A)

连接外接温度传感器,一体机的充电或放电根据环境温度进行温度补偿。


● RS485通讯接口


RJ45管脚定义如下:

管脚	定义	管脚	定义
1	5VDC	5	RS-485-A
2	5VDC	6	RS-485-A
3	RS-485-B	7	GND
4	RS-485-B	8	GND

1.3 产品命名规则

1.4 连接示意图

交流设备需根据选用一体机的输出功率确定,禁止连接大于一体机最大输出功率的负载,可能会损坏一体机。

2. 安装说明

2.1 安装注意事项

- 在安装之前,请仔细阅读本手册,熟悉安装步骤。
- 安装蓄电池时要小心,安装铅酸液体蓄电池时,应戴上防护镜,一旦接触到蓄电池酸液时,请及时用清水冲洗。
- 蓄电池附近避免放置金属物件,避免蓄电池发生短路。
- 蓄电池充电时可能产生酸性气体,确认环境周围通风良好。
- 机柜安装时,在一体机周围应留有足够的空间进行散热,不要将一体机和铅酸液体蓄电池安装 在同一机柜内,避免蓄电池工作时产生的酸性气体腐蚀一体机。
- 只能给符合本一体机的蓄电池类型充电。
- 虚接的连接点和腐蚀的电线可能造成很大的发热融化电线绝缘层,燃烧周围的材料,甚至引起 火灾,所以要拧紧连接头,用扎带固定好电线,避免移动应用时电线摇晃而造成连接头松散。
- 系统连接线按照不大于5A/mm² 的电流密度进行选取(依据国家电气规范第690条 NFPA70)。
- 该一体机仅限室内使用。严禁将一体机安装在潮湿、盐雾、腐蚀、油腻、易燃易爆或粉尘大量 聚集等恶劣环境中。
- 电源的开关关闭之后,一体机内部仍有高压,请勿打开或触摸内部器件,待电容放完电之后进行相关操作。
- 本产品DC输入端极性禁止反接,否则容易损坏设备或发生危险。
- 市电输入和交流输出为高压电,请勿触摸接线处。
- 当风扇工作时,请勿触摸,避免受伤。

2.2 接线规格和断路器选型

接线和安装方式遵守国家和当地的电气规范要求。

建议光伏阵列接线规格和断路器选型

由于光伏阵列的输出电流受光伏组件的类型、连接方式和光照角度的影响,因此光伏阵列的最小线径根据光伏阵列的短路电流来计算。请参考光伏组件规格书中的短路电流值(光伏组件串联时短路电流

不变;并联时短路电流为并联组件的短路电流之和)。阵列的短路电流不能大于PV最大输入电流, PV最大输入电流和PV端最大线径请参考下表;

型号	建议光伏阵列接线线径	建议断路器型号
UP1000-M3212	10mm ² /8AWG	2P—50A
UP1000-M3222	10mm ² /8AWG	2P—50A
UP1500-M3222	10mm ² /8AWG	2P—50A
UP2000-M3322	10mm ² /8AWG	2P—50A
UP3000-M3322	10mm²/8AWG	2P—50A
UP3000-M6322	16mm²/5AWG	2P—100A
UP3000-M2142	6mm ² /10AWG	2P—32A
UP3000-M6142	16mm²/5AWG	2P—100A
UP5000-M6342	16mm²/5AWG	2P—100A
UP5000-M8342	25mm²/4AWG	2P—125A
UP5000-M10342	25mm²/4AWG	2P—125A

注意: 串联时电压不得大于最大PV输入开路电压92V、138V、180V(25℃)。

建议市电接线规格

型号	建议市电接线线径	
UP1000-M3212	2.5mm ² /14AWG	
UP1000-M3222	2.5mm ² /14AWG	
UP1500-M3222	2.5mm ² /14AWG	
UP2000-M3322	4mm ² /12AWG	
UP3000-M3322	6mm ² /10AWG	
UP3000-M6322	6mm ² /10AWG	
UP3000-M2142	6mm ² /10AWG	
UP3000-M6142	6mm ² /10AWG	
UP5000-M6342	10mm ² /8AWG	
UP5000-M8342	10mm ² /8AWG	
UP5000-M10342	10mm ² /8AWG	

注意: 市电接线处已有相对应的断路器,可不加断路器。

建议蓄电池接线规格和断路器选型

型号	建议蓄电池接线线径	建议断路器选型
UP1000-M3212	16mm²/6AWG	2P—100A
UP1000-M3222	16mm²/6AWG	2P—100A
UP1500-M3222	16mm²/6AWG	2P—100A
UP2000-M3322	25mm²/4AWG	2P—125A
UP3000-M3322	35mm²/2AWG	2P—200A
UP3000-M6322	35mm²/2AWG	2P—200A
UP3000-M2142	16mm²/6AWG	2P—100A
UP3000-M6142	16mm²/6AWG	2P—100A
UP5000-M6342	35mm²/2AWG	2P—200A
UP5000-M8342	35mm ² /2AWG	2P—200A

UP5000-M10342	35mm²/2AWG	2P—200A
UP5000-W10342	35mm-/ZAWG	2P-200A

注意: 断路器型号是根据蓄电端不单独另接逆变器的情况来选取的。

▶ 建议AC输出接线规格和断路器选型

型号	建议负载接线线径	建议断路器选型
UP1000-M3212	2.5mm ² /14AWG	2P—10A
UP1000-M3222	2.5mm ² /14AWG	2P—10A
UP1500-M3222	2.5mm ² /14AWG	2P—10A
UP2000-M3322	2.5mm ² /14AWG	2P—16A
UP3000-M3322	4mm²/12AWG	2P—25A
UP3000-M6322	4mm²/12AWG	2P—25A
UP3000-M2142	4mm ² /12AWG	2P—25A
UP3000-M6142	4mm ² /12AWG	2P—25A
UP5000-M6342	6mm ² /10AWG	2P—40A
UP5000-M8342	6mm²/10AWG	2P—40A
UP5000-M10342	6mm²/10AWG	2P—40A

提示:接线的线鼻子规格参数详见包装盒内的孔位纸板。

- 接线线径供参考,如果光伏阵列和一体机或者一体机和蓄电池之间的距离比较远时,使用较粗的线材可以降低压降以改善系统性能。
- 以上接线线径和断路器为参考建议,请根据实际情况来选取合适的接线线径和断路器。

2.3 安装及接线

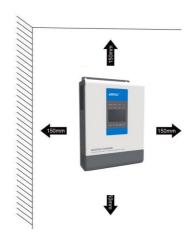


图 2-1 安装示意图

安装步骤:

步骤1: 确定安装位置和散热空间

确定一体机安装位置,如墙面;安装一体机时,确认有足够的空气流过一体机的散热片,一体机上下至少留有150mm空间,确认能自然对流散热。参考图2-1安装示意图。

爆炸的危险!不要将一体机和铅酸液体蓄电池安装在同一个密闭的空间内!也不要安装在一个蓄电池气体可能聚集的密闭的地方。

步骤2: 取下端子保护盖

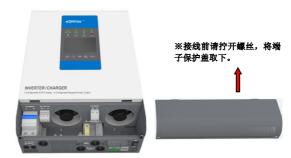


图 2-2 取下端子保护盖

步骤3:接线

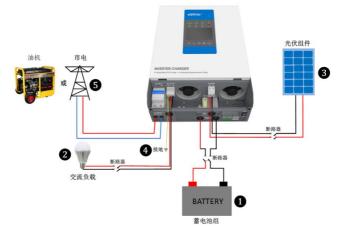


图 2-3 接线示意图

- 高压危险!市电输入、AC输出和光伏阵列会产生很高的电压,接线过程中,请勿闭合 断路器或保险.同时确认各部件的电极正确连接。
- 蓄申池端需安装断路器,其选择请参考章节"2.2接线规格及断路器选型"。

如果一体机应用于雷电频繁区域,建议在PV输入端安装外部的避雷器。

> 接地处理

当有市电接入一体机时,需要进行接地处理。该一体机的接地端子需要紧实的接地,如图2-3所示。 要求接地线缆截面积与建议的负载接线线径保持一致,接地点尽量靠近一体机,接地线越短越好。

- ▶ AC交流输出、接地和PV接线端子的接线方法:
- ① 当接线时,请勿闭合断路器,用"一"字螺丝刀拧开螺丝连接对应线。
- ② 当移除接线时, 先停止一体机工作, 用"一"字螺丝刀拧开螺丝拆除对应线。

步骤 4: 安装端子保护盖

步骤5: 连接选配件

• 连接远程温度传感器线(型号: RTS300R47K3.81A)

将远程温度传感器线连接到接口⑥,另一端靠近蓄电池,如右图。

当连接外接温度传感器(标配件)的情况下,控制器充放或放电会根据环境温度进行温度补偿。

• 连接选配件,通过PC机和手机APP监控系统状态或修改参数

(1) PC 机监控设置软件

www.epever.com.cn——逆变一体机监控软件(UP)

(2) 安卓系统手机 APP 软件

www.epever.com.cn—UPower

步骤6: 再次检查接线是否连接正确。

步骤7: 启动一体机

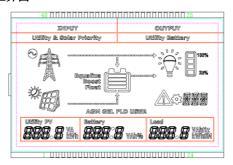
先闭合蓄电池端的断路器,其次将面板上船型开关置ON状态,Inverter指示灯常亮即正常工作,再次闭合光伏阵列和市电的断路器,待AC输出正常后再逐一打开交流负载,以免因同时开启负载产生较大的瞬间冲击而发生保护动作,一体机按照设置的模式进行正常的工作。

提示: 具体安装步骤和选配件清单详见包装盒内的孔位纸板。

- 若给不同的交流负载供电,建议先打开冲击电流大的负载,待负载工作稳定后再打开冲击电流小的负载。
- 如果一体机无正常工作或者LCD或指示灯显示异常,参考章节5解除故障,或者联系我公司售后服务人员。

3. 界面介绍

3.1 指示灯


指示灯	颜色	状态	说明
	(7.6	熄灭	无市电
		常亮	有市电但不充电
Utility Charge	绿色	慢闪(0.5Hz)	市电充电
		快闪(2.5Hz)	市电充电模块故障
		熄灭	无 PV
	<i>6</i> ∃. <i>£</i> 2.	常亮	有 PV 但不充电
PV Charge	绿色	慢闪(0.5Hz)	PV 充电
		快闪(2.5Hz)	PV 充电模块故障
	绿色	熄灭	逆变关闭
		常亮	逆变待机/旁路
Inverter		慢闪(0.5Hz)	逆变输出
		快闪(2.5Hz)	逆变故障
	绿色 oad	熄灭	负载无输出
Load		常亮	负载有输出
	Contract to		干接点断开
Relay	绿色	常亮	干接点闭合
	绿色	常亮	有电源信号输入(3.3~12V)
Remote	球巴	熄灭	无电源信号输入
	/= /z.	熄灭	逆变输出
Bypass	绿色	慢闪(0.5Hz)	市电输出
	lee P	熄灭	设备正常
Fault	红色		设备故障

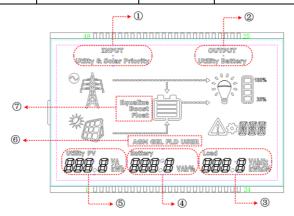
3.2 按键

按键	操作	说明
ESC	短按	退出当前界面
ESC	长按	清除故障
UP DOWN	短按	浏览界面:上翻/下翻 设置界面:上翻/下翻
短按		切换浏览参数栏 确定设置参数
SET/	长按	实时界面切换为设置浏览界面 设置浏览界面切换为参数设置界面
AC OUT	长按	逆变器开启/关闭

3.3 实时监控界面

注意: 水平视线和液晶屏的角度在 90° 范围内才可以清晰的看到液晶屏的显示内容。如果角度超过 90°,液晶屏的显示内容无法看清。

图标说明:


图标	说明	图标	说明
~	市电接入有输入		PV 接入有输入
*	市电未接入 市电接入无输入) II	PV 未接入 PV 接入但电压低
	负载开		负载关

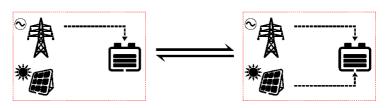
负载功率 一格 8~25% 两格 25~50%

负载功率 三格 50~75% 四格 75~100%

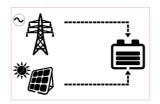

序号	设置项	设置内容
1	INPUT 充电模式	Solar priority(太阳能优先) Utility priority(市电优先) Utility & solar(市电与太阳能) Solar(仅太阳能)
2	OUTPUT 输出模式	Battery 蓄电池供电 Utility 市电供电
3	Load 负载	AC 输出电压 AC 输出电流 AC 输出功率 AC 输出频率
4	Battery 蓄电池	蓄电池电压 总充电电流(PV 充电电流+市电充电电流) 蓄电池温度 蓄电池 SOC
	PV 光伏阵列	PV 输入电压 PV 充电电流 PV 充电功率 PV 充电电量
⑤	Utility 市电	市电输入电压 市电充电电流 市电充电功率 市电充电电量

6	Battery Type 蓄电池类型	AGM(免维护) GEL(胶体) FLD(液体) USER(自定义)
Ø	Battery charging stage 蓄电池充电阶段	Float(浮充) Boost(提升) Equalize(均衡)每月 28 日均衡一次

① 充电模式 (INPUT):


★太阳能优先(Solar priority)—出厂默认模式

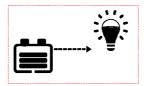
太阳能优先给蓄电池充电,当蓄电池电压(V_{BAT})低于恢复辅助模块充电电压(V_{AON})时,市电开始充电;当蓄电池电压升到停止辅助模块充电电压(V_{AOF})时,市电停止充电;


★市电优先(Utility priority)

市电优先给蓄电池充电,当蓄电池电压(**V**_{BAT})低于恢复辅助模块充电电压(**V**_{AON})时,太阳能开始充电;当蓄电池电压达到停止辅助模块充电电压(**V**_{AOF})时,太阳能停止充电;

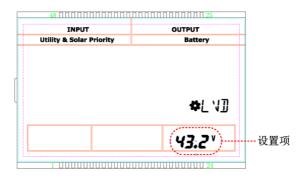
★市电与太阳能充电(Utility & solar)

市电与太阳能同时给蓄电池充电


★仅太阳能充电(Solar)

仅太阳能给蓄电池充电

② 输出模式 (OUTPUT):


● 蓄电池供电(Battery)

• 市电供电(Utility)—出厂默认模式

3.4 设置界面

1) 普通用户参数设置界面

操作步骤:

- ① 在实时监控界面下,长按 SET/ENTER 按键,进入普通用户参数设置界面 > 选择要设置的项 > 长按 SET/ENTER 按键 > 修改参数 > 短按 SET/ENTER 按键确认。
- ②按 ESC 按键退出设置界面切换到实时监控界面。

设置项:

序号	显示	说明	默认	\$	范围
				AGM	免维护
1	1 ETP	蓄电池类型	AGM	GEL	胶体
'		亩电池天主	AGW	FLD	液体
				USER	自定义
				Solar priority	太阳能优先
2	2 CSP	充电优先模式	Solar priority	Utility priority	市电优先
				Utility & solar	市电与太阳能充电
				Solar	仅太阳能充电
3	OSP	to 11 /11 44 4# -15	1.1625	Battery	逆变优先模式
3	ייובט	输出优先模式	Utility	Utility	市电优先模式
4	LIMT	温度单位	℃	°C/°F	摄氏度/华氏度
5	ELT	背光时间	30S	30S/60S/100S(常亮)	
6	E.45	蜂鸣器告警开关	ON	ON/ OFF	开/关
7	ΓN]	低压断开电压	10.8V*	自定义: 10.5~11.3V*, 步长 0.1V	
8	L'AR	低压断开恢复电压	12.5V*	自定义: 12.0~	13.0V*,步长 0.1V*

★以上电压参数为 25°C, 12V 系统参数; 24V 系统参数×2, 48V 系统参数×4。

当输出优先模式为蓄电池时,且蓄电池的电压低于低压断开电压(可设置)时,系统将切换到市电给负载供电。

2) 工程师用户参数设置界面

操作步骤:

- ① 在实时监控界面下,长按 UP+DOWN 组合按键,进入工程师用户参数设置界面 > 选择要设置的项 > 长按 SET/ENTER 按键 > 修改参数 > 短按 SET/ENTER 按键确认。
- ② 按 ESC 按键退出设置界面切换到实时监控界面。

设置项:

序号	显示	说明	默认	范围
9	ECT	提升时间	30M	30M/60M/120M/180M
10	BEN	提升电压	AGM: 14.4V* GEL: 14.2V* FLD: 14.6V* USER: 14.4V*	自定义: 12.5~14.8V* 步长: 0.1V*
11	E'JP	提升恢复电压	13.2V*	自定义: 12.5~14.0V*

				步长: 0.1V*
12	FEN	浮充电压	13.8V*	自定义: 13.0~14.0V* 步长: 0.1V*
13	ONR	超压断开恢复电 压	15.0V*	自定义: 14.5~15.5V* 步长: 0.1V*
14	O.A.D	超压断开电压	16.0V*	自定义: 15.5~16.1V* 步长: 0.1V*
15	ADF	停止辅助模块充 电电压	14.0V*	自定义: 12.0~14.8V*
16	ADN	恢复辅助模块充 电电压	12.0V*	步长: 0.1V*
17	JON	干接点闭合电压	11.1V*	自定义: 10.8~12.0V* 步长: 0.1V*
18	10F	干接点断开电压	12.0V*	自定义: 12.0~13.25V* 步长: 0.1V*
19	MEE	总充电电流	60.0A [◆]	15.0∼60.0A [◆]
20	PSM	节电模式	OFF	ON 开 OFF 关
21	[FA	故障清零	OFF	ON 开 OFF 关
22	9CL	累计电量清零	OFF	ON 开 OFF 关
23	TEC	蓄电池电量	600AH	100~4000AH 步长: 100AH
24	'VER	软件版本号	U-1.0	不可设置

★以上电压参数为 25°C, 12V 系统参数; 24V 系统参数×2, 48V 系统参数×4。

蓄电池自定义需遵循的逻辑:

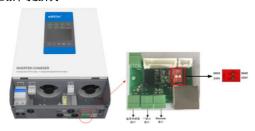
- A. 超压断开电压>充电限制电压≥均衡电压≥提升电压≥ 浮充电压>提升恢复电压;
- B. 超压断开电压>超压断开恢复电压:
- C. 低压断开恢复电压>低压断开电压≥放电限制电压;
- D. 欠压报警恢复电压>欠压报警电压≥放电限制电压;
- E. 提升恢复电压>低压断开恢复电压。
- ◆不同功率等级的一体机电流设置范围不一样,具体见技术参数表。

注意:

15/16: 停止/恢复辅助模块充电电压

当充电模式为太阳能优先或市电充电优先时,辅助模块充电电压才生效。

20: 节电模式

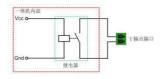

当节电模式开关处于开启状态时, 当输出侧负载小于 70W, AC 输出 5S, 无输出 10S, 循环执行。

21: 故障清零

当 AC 输出发生短路或过载时,可以清除故障。

3.5 其他功能

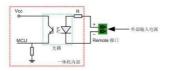
1) 输出电压/频率等级开关


当开关 1 置于 ON 侧时,输出电压选择为 230VAC,反之为 220VAC;

当开关 2 置于 ON 侧时,输出频率选择为 60Hz,反之为 50Hz。

若重新设置一体机的输出频率或输出电压,关闭一体机,设置好后启动一体机。

2) 干接点接口(Dry contact)



工作原理: 当蓄电池电压等于干接点闭合电压点(DON)时,继电器的线圈通电,开关闭合。干接点接口可允许连接的电路回路参数为不大于 125VAC/1A, 30VDC/1A。

3) Remote 接口

工作原理: Remote 接口输入 3.3~12V 电压。

- (1) 输入电压 Vi 的持续时间为 2.5~10S 之内, AC 输出状态取反(即之前 AC 为输出状态, 此时 AC 为无输出状态; 之前 AC 为无输出状态, 此时 AC 为输出状态;)
- (2) 输入电压 Vi 的持续时间大于 10S, AC 一直为输出状态。直到输入电压 Vi 消失

如果要修改输入电压的范围,可以换R电阻值来实现。

4. 保护功能

序号	保护功能			说明		
		当光伏阵列充电电池	流大于 PV 额	定电流时	,将会以额定	尼电流进行充电。
1	PV 限流保护	注意: 当 PV 充电	电流大于额线	定电流时,	确认光伏阵	列的开路电压不
		大于"最大 PV 开路	电压",否则	可能损坏	一体机。	
2	PV 短路保护	当PV不充电时,光	伏阵列发生统	豆路,不会	损坏一体机	•
		光伏阵列极性反接	时,设备不会	:损坏,修	正后会继续正	E常工作。
3	PV 反接保护	注意:当光伏阵列。	反接,光伏四	∮列实际运	行功率大于	最大 PV 输入功
		率的 1.5 倍时,将	员坏一体机。			
١.	元 (日)	夜间由于蓄电池的	电压大于 PV	组件的电	压,避免蓄电	池通过 PV 组件
4 夜间防反充保护 放电。						
5	市电输入超压保护	当市电电压大于 28	80V 时,将停	止市电充	放电。	
6	市电输入欠压保护	当市电电压小于 16	60V 时,将停	止市电充	放电。	
l _	195 de Nobre et 101 de	当蓄电池电压升到超压断开电压点,将自动停止PV和市电对蓄电池充				
7	蓄电池超压保护	电,避免蓄电池因	过度充电而打	员坏。		
	* + > > > + > 10 + >	当蓄电池电压降到低压断开电压点,将自动停止对蓄电池放电,避免				
8	蓄电池过放保护	蓄电池因过度放电	而损坏。			
		当负载输出端发生	短路故障时,	关闭输出,	此后延时自	动恢复输出 (第
	7. ±1.45 (1. 6= 05 /E 45	一次延时 5S ,第二	次延时 10S	,第三次發	延时 15S);	如果尝试 3 次输
9	负载输出短路保护	出负载端仍为短路状态则需要先消除负载的短路故障后手动重新开				章后手动重新开
		启,才能恢复正常输出。				
		过载倍数	1.2	1.5	1.8	2.0
10	负载输出过载保护 持续工作时间 15分钟 30秒 10秒 5秒					
		自动恢复 3 次 第一次延时 5S,第二次延时 10S,第三次延时 15S				
	\L \(\dagger\) \(\	当一体机的内部温	度过高时,-	一体机将停	止充放电;	待温度恢复正常
11	设备过热保护	时,一体机将恢复	充放电			

5. 故障排除

5.1 故障指示

模块 名称	故障 代码	故障名称	蓄电池 图标外框	指示灯	蜂鸣器	Fault 灯
	EL 1	蓄电池欠压			_	-
	807	蓄电池超压				
蓄电池	E01	蓄电池过放	闪烁	_		
	ΣΈ	系统电压错误				
	LTP	蓄电池过低温				
PV 充电	OTP	PV 充电模块超高温		PV charge 快闪		
模块	[FA	通讯故障		i v charge KM	鸣叫	常亮
	ΙΟV	输入过压				
市电充电	ILN	输入欠压		utility 快闪		
模块	OTP	市电充电模块超高温				
	[F4	通讯故障	_			
	□\A	输出电压异常				
逆变输出模块	0SC	输出短路				
	00L	输出过载		inverter 快闪		
200	OTP.	逆变输出模块超高温				
	[FA	通讯故障				

5.2 故障排除

故障	解决措施
蓄电池超压	测量蓄电池电压是否过高并断开光伏阵列连线
蓄电池过放	待蓄电池充电恢复到低压断开恢复电压以上,或其他方式补充电能
蓄电池超高温	待蓄电池冷却到超温恢复温度以下时,恢复正常充、放电控制
设备超高温	待设备温度冷却到超温恢复温度以下时,恢复正常充、放电控制
输出过载	①减少用电设备; ②重启一体机清除故障负载恢复输出。
输出短路	①仔细检查负载连接情况,清除短路故障点; ②重启一体机,清除故障负载恢复输出。

6. 系统维护

为了保持长久的工作性能,建议每年进行两次以下项目的检查。

- 确认一体机周围的气流不会被阻挡住,清扫散热器上的污垢或碎屑。
- 检查暴露的导线是不是因日晒、与周围其他物体摩擦、干朽、昆虫或鼠类破坏等导致绝缘受到 损坏,视实际情况讲行维修或换导线。
- 验证指示灯指示及显示屏显示与设备实际运行情况是否一致,请注意不一致或错误的情况需采 取纠正措施。
- 检查接线端子是否有腐蚀、绝缘损坏、高温或燃烧/变色迹象, 拧紧端子螺丝。
- 检查是否有污垢、昆虫筑巢和腐蚀现象,按要求清理。
- 若避雷器已失效,及时换掉失效的避雷器;避免造成一体机甚至用户其他设备的雷击损坏。

电击危险! 进行上述操作时确认一体机电源已断开,且将电容里的电量放掉,再进行相应 检查或操作!

7. 技术参数

型号	UP1000-M3212	UP1000-M3222	UP1500-M3222	UP2000-M3322	UP3000-M3322	UP3000-M6322	
系统蓄电池电压	12VDC		24VDC				
蓄电池输入电压范围	10.8~16VDC		21.6~32VDC				
逆变输出							
持续输出功率	800W	800W	1200W	1600W	2400W	2400W	
持续 15 分钟输出功率	1000W	1000W	1500W	2000W	3000W	3000W	
5 秒过载功率	1600W	1600W	2400W	3200W	4800W	4800W	
最大冲击功率	2000W	2000W	3000W	4000W	6000W	6000W	
输出电压范围	220V(-6%~+5%) 230V(-10%~+5%)			220VAC(±5%) 230VAC(-10%~+5%)		
输出频率范围			50/60	±0.1Hz			
输出方式			单	相			
输出波形			纯正	弦波			
负载功率因数			0.2-1(负载功率:	≤持续输出功率)			
输出波形谐波分量			≤3% (12V,24\	/ 纯阻性负载)			
最大逆变效率	91%	94%	95%	95%	95%	95%	
市电切换时间			20mS (纯	阻性负载)			
市电充电							
市电输入电压范围			160VAC~280VAC 170VAC~270VAC				
最大市电充电电流	20A	20A	20A	30A	30A	30A	
太阳能充电							
見十 DV T吸出厂	60V (最低温度)		100V(뒼	景低温度)		150V (最低温度)	
最大 PV 开路电压	46V (25℃)		92V (25℃)		138V (25℃)	
最大 PV 输入功率	390W	780W	780W	780W	780W	1500W	
最大 PV 充电电流	30A	30A	30A	30A	30A	60A	
均衡电压	14.6V 29.2V						
提升电压	14.4V			28.8V			
浮充电压	13.8V			27.6V			

跟踪效率	≤99.5%						
充电转换效率			≤9	8%			
温度补偿系数			-3mV/°C/	2V (默认)			
其他	<u>'</u>						
空载损耗	≤1.2A	≤0.6A	≤0.6A	≤0.8A	≤0.8A	≤0.8A	
防护等级			IP	30			
相对湿度			< 95% (不结露)			
工作环境温度			-20°C∼50°C (1	00%输入输出)			
海拔高度		< 5000	m (海拔大于 1000 米部	馬按照 GB7260 规定	降容使用)		
机械参数							
外形尺寸		386×300×126mm 444×300×126mm 518×310×168mm					
安装尺寸		230mm					
安装孔大小		Ф8тт					
净重	7.3kg	7.3kg	7.4kg	8.5kg	9.2kg	14.9kg	

型号	UP3000-M2142	UP3000-M6142	UP5000-M6342	UP5000-M8342	UP5000-M10342				
系统蓄电池电压		48VDC							
蓄电池输入电压范围		43.2∼64VDC							
逆变输出	逆变输出								
持续输出功率	2400W	2400W	4000W	4000W	4000W				
持续 15 分钟输出功率	3000W	3000W	5000W	5000W	5000W				
5 秒过载功率	4800W	4800W	W0008	W0008	8000W				
最大冲击功率	6000W	6000W	10000W	10000W	10000W				
输出电压范围		220V/	AC(±5%), 230VAC(-10%~	+5%)					
输出频率范围			50/60±0.1Hz						
输出方式			单相						
输出波形		纯正弦波							
负载功率因数	0.2-1 (负载功率≤持续输出功率)								
输出波形谐波分量		≤;	3%(24V,48V 纯阻性负载))					
最大逆变效率			95%						

市电切换时间	20mS (纯阻性负载)							
市电充电								
市电输入电压范围		160VAC~280VAC(运行电压范围) 170VAC~270VAC(初次上电电压范围)						
最大市电充电电流	15A	15A	30A	30A	30A			
太阳能充电								
目上 DV 工吹 土厂		150V (最低温度)		200V (最	低温度)			
最大 PV 开路电压		138V (25°C)		180V (2	25℃)			
最大 PV 输入功率	1040W	3000W	3000W	4000W	5000W			
最大 PV 充电电流	20A	60A	60A	80A	100A			
均衡电压			58.4V					
提升电压			57.6V					
浮充电压			55.2V					
跟踪效率			≤99.5%					
充电转换效率			≤98%					
温度补偿系数			-3mV/°C/2V (默认)					
其他	•							
空载损耗	≤0.6A	≤0.6A	≤0.8A	≤0.8A	≤0.8A			
防护等级			IP30					
相对湿度			< 95%(不结露)					
工作环境温度		-20℃~50℃(100%输入输出)						
海拔高度		<5000m (海拔大于 1000 米需按照 GB7260 规定降容使用)						
机械参数								
外形尺寸	444×300×126mm	518×310×168mm	×168mm 605x315x178mm					
安装尺寸			230mm					
安装孔大小			Ф8mm					
净重	7.3kg	14.7kg	16.6kg	17.5kg	17.8kg			

如有变更,恕不另行通知。 版本号: V2.3

惠州汇能精电科技有限公司

北京服务热线: 010-82894896/82894112

惠州服务热线: 0752-3889706

深圳服务热线: 0755-89236770

邮箱: sales@epever.com

网址: www.epever.com.cn